1. R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics, 2007.
2. H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (5) (1977) 509–541.
3. S. Kim, Distances of qubit density matrices on Bloch sphere, J. Math. Phys. 52 (2011) 102303.
4. S. Kim, Distributivity on the gyrovector spaces, Kyungpook Math. J. 55 (2015) 13–20.
5. S. Kim, Factorizations of invertible density matrices, Linear Algebra Appl. 463 (2014) 190–204.
6. S. Kim, J. Lawson, Smooth Bruck loops, symmetric spaces, and nonassociative vector spaces, Demonstratio Mathematica 44 (4) (2011) 755-779.
7. S. Kim, J. Lawson, Unit balls, Lorentz boosts, and hyperbolic geometry, Results Math. 63 (2013)1225-1242.
8. J. Lawson, Y. Lim, Monotonic properties of the least squares mean, Math. Ann. 351 (2011) 267–279.
9. J. Lawson, Y. Lim, Karcher means and Karcher equations of positive definite operators, Trans. Amer. Math. Soc. Series B 1 (2014) 1-22.
10. Y. Lim, M. Pálfia, Matrix power mean and the Karcher mean, J. Funct. Anal. 262 (4) (2012) 1498–1514.
11. M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl. 26 (3) (2005) 735-747.
12. J. Park, S. Kim, Hilbert projective metric on a gyrogroup of qubit density matrices, Rep. Math. Phys. 76 (3) (2015) 389-400.
13. J. Ratcliffe, Foundations of Hyperbolic Manifolds, 2nd Ed., Springer, Berlin, 2005.
14. L. V. Sabinin, L. L. Sabinina, L. V. Sbitneva, On the notion of a gyrogroup, Aeq. Math. 56 (1998) 11–17.
15. T. Suksumran, K. Wiboonton, Einstein gyrogroup as a B-loop, Rep. Math. Phys. 76 (1) (2015) 63–74.
16. A. A. Ungar, Analytic Hyperbolic geometry and Albert Einstein's Special Theory of Relativity, World Scientific Press, 2008.