1. R. Kh. Amirov, V. A. Yurko, On differential operators with singularity and discontinuity conditions inside an interval, Ukrainian Math. J. 53 (2001) 1751–1770.
2. K. Aydemir, Boundary value problems with eigenvalue-dependent boundary and transmission conditions, Bound. Value Probl. 2014, 2014:131.
3. K. Aydemir, O. Sh. Mukhtarov, Spectrum of one Sturm-Liouville type problem on two disjoint intervals, Gen. Math. Notes 21 (2014) 43-51.
4. K. Aydemir, O. Sh. Mukhtarov, Second-order differential operators with interior singularity, Adv. Difference Equ. 2015, 2015:26, 10 pp.
5. M. Braun, Differential Equations and their Applications: An Introduction to Applied Mathematics, 3rd ed., Springer-Verlag, New York, 1983.
6. H. Coskun, Asymptotic approximations of eigenvalues and eigenfunctions for regular Sturm-Liouville problems, Rocky Mountain J. Math. 36 (2006) 867-883.
7. G. Freiling, V. Yurko, On the determination of differential equations with singularities and turning points, Results Math. 41 (2002) 275-290.
8. G. Freiling, V. Yurko, On the solvability of an inverse problem in the central-symmetric case, Appl. Anal. 90 (2011) 1819-1828.
9. G. Sh. Guseinov, Eigenfunction expansions for a Sturm-Liouville problem on time scales, Int. J. Difference Equ. 2 (2007) 93-104.
10. A. P. Khromov, Expansion in eigenfunctions of ordinary linear differential operators with irregular decomposing boundary conditions, Mat. Sb. (N.S.) 70 (1966) 310-329.
11. Q. Kong, A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differential Equations 131 (1996) 1-19.
12. R. K. Miller, A. N. Michel,Ordinary Differential Equations, Academic Press, INC., New York, 1982.
13. S. Mosazadeh, The stability of the solution of an inverse spectral problem with a singularity, Bull. Iranian Math. Soc. 41 (2015) 1061-1070.
14. O. Sh. Mukhtarov, H. Olgar, K. Aydemir, Resolvent operator and spectrum of new type boundary value problems, Filomat 29 (2015) 1671-1680.
15. A. Neamaty, S. Mosazadeh, On the canonical solution of the Sturm-Liouville problem with singularity and turning point of even order, Canad. Math. Bull. 54 (2011) 506-518.
16. E. Sen, Asymptotic properties of eigenvalues and eigenfunctions of a Sturm-Liouville problems with discontinuous weight function, Miskolc Math. Notes 15 (2014) 197-209.
17. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, INC., New York, 1983.
18. V. A. Yurko, The inverse spectral problem for differential operators with nonseparated boundary conditions, J. Math. Anal. Appl. 250 (2000) 266-289.
19. V. A. Yurko, An inverse spectral problem for non-selfadjoint Sturm-Liouville operators with nonseparated boundary conditions, Tamkang J. Math. 43 (2012) 289-299.