On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs

Document Type : Special Issue: Energy of Graphs

Authors

Faculty of Electronic Engineering, University of Nis, Nis, Serbia

Abstract

Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 n=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-11/μand LEL(G)=Σi=1n-1 √μi, respectively. In this paper we consider relationship between Kf(G) and LEL(G).

Keywords

Main Subjects


1. B. Arsić, I. Gutman, K. Ch. Das, K. Xu, Relations between Kirchhoff and
Laplacian–energy–like invariant,
Bull. Cl. Sci. Math. Nat. Sci. Math. 37
(2012) 59–70.
2. M. Biernacki, H. Pidek, C. Ryll-Nardzewski, Sur une inégalité entre des intégrales définies (French), Ann. Univ. Mariae Curie-Sklodowska. Sect. A. 4
(1950) 1–4.
3. B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds
and Extremal graphs, In:
Bounds in Chemical Graph Theory – Basics, I.
Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Mathematical Chemistry Monographs, MCM 19, University of Kragujevac and
Faculty of Science Kragujevac, Kragujevac„ 2017, pp. 67–153.
4. B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices,
MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
5. F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series
in Mathematics, 92. Published for the Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997.
6. V. Cirtoaje, The best lower bound depended on two fixed variables for
Jensen’s inequality with ordered variables,
J. Inequal. Appl. (2010) Art. ID
128258,12 pp.
7. K. C. Das, K. Xu, I. Gutman, Comparison between Kirchhoff index and the
Laplacian–energy–like invariant,
Linear Algebra Appl. 436 (2012) 3661–3671.
8. K. Ch. Das, K. Xu, On relation between Kirchhoff index, Laplacian–energy–
like invariant and Laplacian energy of graphs,
Bull. Malays. Math. Sci. Soc.
39 (2016) S59–S75.
9. K. C. Das, On the Kirchhoff index of graphs, Z. Naturforsch 68a (2013)
531–538.
10. C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull.
London Math. Soc.
9 (1977) 203–208.
11. I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz 103
(1978) 22 pp.
12. I. Gutman, The energy of a graph: old and new results, In: Algebraic Combinators and Applications, Springer, Berlin, 2001, pp. 196–211.
13. I. Gutman, Editorial, Census of graph energies, MATCH Commun. Math.
Comput. Chem.
74 (2015) 219–221.
14. I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
15. I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.),
Bounds in Chemical Graph Theory – Basics, Mathematical Chemistry Monographs, MCM 19, University of Kragujevac and Faculty of Science Kragujevac,
Kragujevac, 2017.
16. I. Gutman, E. Milovanović, I. Milovanović, Bounds for Laplacian-type graph
energies,
Miskolc Math. Notes 16 (2015) 195–203.
17. I. Gutman, X. Li, (Eds.), Energies of Graphs – Theory and Applications,
Mathematical Chemistry Monographs, MCM 17, University of Kragujevac
and Faculty of Science Kragujevac, Kragujevac, 2016.
18. I. Gutman, B. Mohar, The quasi–Wiener and the Kirchhoff indices coincide,
J. Chem. Inf. Comput. Sci. 36 (1996) 982–985.
19. I. Gutman, S. Radenković, S. Djordjević, I. Ž. Milovanović, E. I. Milovanović,
Total
Pi-electron and HOMO energy, Chem. Phys. Lett. 649 (2016) 148–150.
20. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total Pi-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
21. I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414
(2006) 29–37.
22. D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81–95.
23. X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
24. B. Liu, Y. Huang, Z. You, A survey on the Laplacian–energy–like invariant,
MATCH Commun. Math. Comput. Chem. 66 (2011) 713–730.
25. J. Liu, J. Cao, X. F. Pan, A. Elaiw, The Kirchhoff index of hypercubes and
related complex networks,
Discrete Dyn. Nat. Soc. (2013) Art. ID 543189, 7 pp.
26. J. Liu, B. Liu, A Laplacian–energy–like invariant of a graph, MATCH Commun. Math. Comput. Chem. 59 (2008) 355–372.
27. A. Lupas, A remark on the Schweitzer and Kantorovich inequalities, Univ.
Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz.
383 (1972) 13–15.
28. I. Milovanović, I. Gutman, E. Milovanović, On Kirchhoff and degree Kirchhoff
indices,
Filomat 29 (2015) 1869–1877.
29. I. Ž. Milovanović, E. I. Milovanović, On some lower bounds of the Kirchhoff
index,
MATCH Commun. Math. Comput. Chem. 78 (2017) 169–180.
30. I. Ž. Milovanović, E. I. Milovanović, Bounds of Kirchhoff and degree Kirchhoff
indices, In:
Bounds in Chemical Graph Theory – Mainstreams, I. Gutman,
B. Furtula, K. C. Das, E. Milovanović, I. Milovanović, (Eds.), Mathematical
Chemistry Monographs, MCM 20, University of Kragujevac and Faculty of
Science Kragujevac, Kragujevac, 2017, pp. 93–119.
31. I. Ž. Milovanović, E. I. Milovanović, Remarks on the energy and the minimum
dominating energy of a graph,
MATCH Commun. Math. Comput. Chem. 75
(2016) 305–314.
32. I. MIlovanović, E. Milovanovioć, I. Gutman, Upper bounds for some graph
energies,
Appl. Math. Comput. 289 (2016) 435–443.
33. D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Springer Verlag, BerlinHeidelberg–New York, 1970.
34. S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30
years after,
Croat. Chem. Acta 76 (2003) 113–124.
35. J. L. Palacios, Some additional bounds for the Kirchhoff index, MATCH Commun. Math. Comput. Chem. 75 (2016) 365–372.
36. S. Pirzada, H. A. Ganie, I. Gutman, On Laplacian–energy–like invariant and
Kirchhoff index,
MATCH Commun. Math. Comput. Chem. 73 (2015) 41–59.
37. S. Pirzada, H. A. Ganie, I. Gutman, Comparison between Laplacian–energy–
like invariant and the Kirchhoff index,
Electron. J. Linear Algebra 31 (2016) 27–41.
38. B. C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963)
442–448.
39. D. Stevanović, S. Wagner, Laplacian–energy–like invariant: Laplacian coefficients, extremal graphs and bounds, In: Energies of Graphs – Theory and
Applications
, I. Gutman, X. Li (Eds.), Mathematical Chemistry Monographs,
MCM 17, University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, 2017, pp. 81–110.
40. H. Wiener, Structural determination of paraffin boiling points, J. Amer.
Chem. Soc.
69 (1947) 17–20.
41. C. Woods, My Favorite Application Using Graph Eigenvalues: Graph Energy,
Avaliable at
http://www.math.ucsd.edu/ fan/teach/262/13/ 262notes/ Woods_Midterm.pdf
42. B. Zhou, N. Trinajstić, A note on Kirchhoff index, Chem. Phys. Lett. 455
(2008) 120–123.
43. B. Zhou, I. Gutman, T. Aleksić, A note on the Laplacian energy of graphs,
MATCH Commun. Math. Comput. Chem. 60 (2008) 441–446.
44. H. Y. Zhu, D. J. Klei, I. Lukovits, Extensions of the Wiener number, J. Chem.
Inf. Comput. Sci.
36 (1996) 420–428.