Eigenvalues of the Cayley Graph of Some Groups with respect to a Normal Subset

Document Type : Special Issue: Energy of Graphs


Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran


‎‎Set X = { M11‎, ‎M12‎, ‎M22‎, ‎M23‎, ‎M24‎, ‎Zn‎, ‎T4n‎, ‎SD8n‎, ‎Sz(q)‎, ‎G2(q)‎, ‎V8n}‎, where M11‎, M12‎, M22‎, ‎M23‎, ‎M24 are Mathieu groups and Zn‎, T4n‎, SD8n‎, ‎Sz(q)‎, G2(q) and V8n denote the cyclic‎, ‎dicyclic‎, ‎semi-dihedral‎, ‎Suzuki‎, ‎Ree and a group of order 8n presented by
                                     V8n = < a‎, ‎b | a2n = b4 = e‎, ‎ aba = b-1‎, ‎ab-1a = b>,
respectively‎. ‎In this paper‎, ‎we compute all eigenvalues of Cay(G,T)‎, ‎where G \in X and T is minimal‎, ‎second minimal‎, ‎maximal or second maximal normal subset of G\{e} with respect to its size‎. ‎In the case that S is a minimal normal subset of G\{e}‎, ‎the summation of the absolute value of eigenvalues‎, ‎energy of the Cayley graph‎, ‎are evaluated‎.


Main Subjects

1. R. C. Alperin, Rational subsets of finite groups, Int. J. Group Theory 3(2)
(2014) 53–55.
2. R. C. Alperin, B. L. Peterson, Integral sets and Cayley graphs of finite groups,
Electron. J. Combin. 19 (2012) #P44 1–12.
3. H. Behravesh, Quasi-permutation representation of Suzuki group, J. Sci. I.
R. Iran
10(1) (1999) 53–56.
4. N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974.
5. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas
of Finite Groups
, Oxford Univ. Press, Clarendon, Oxford, 1985.
6. M. R. Darafsheh, N. S. Poursalavati, On the existence of the orthogonal basis
of the symmetry classes of tensors associated with certain groups,
SUT J. Math. 37(1) (2001) 1–17.
7. P. Diaconis, M. Shahshahani, Generating a Random Permutation with Random Transpositions, Z. Wahr. Verw. Gebiete 57(2) (1981) 159–179.
8. M. Ghorbani, On the eigenvalues of normal edge-transitive Cayley graphs,
Bull. Iranian Math. Soc. 41(1) (2015) 101–107.
9. I. Gutman, A graph theoretical study of conjugated systems containing a
linear polyence fragment,
Croat. Chem. Acta 48(2) (1976) 97–108.
10. I. Gutman, The energy of a graph, 10. Steierm¨arkisches Mathematisches Symposium (Stift Rein, Graz, 1978). Ber. Math.-Statist. Sekt. Forsch. Graz 103 (1978) 22 pp.
11. M. Hormozi, K. Rodtes, Symmetry classes of tensors associated with the
semi-dihedral groups
SD8n, Colloq. Math. 131(1) (2013) 59–67.
12. I. M. Isaacs, Character Theory of Finite Groups, Dover, New-York, 1976.
13. G. James, M. Liebeck, Representations and Characters of Groups, Cambridge
Univ. Press, London-New York, 1993.
14. M. Ram Murty, Ramanujan Graphs, J. Ramanujan Math. Soc. 18(1) (2003) 1–20.
15. R. Ree, A family of simple groups associated with the simple Lie algebra of
type (
G2), Amer. J. Math. 83 (1961) 432–462.
16. M. Suzuki, On a class of doubly transitive groups, Annals Math. 75(1) (1962)
17. The GAP Team, GAP-Groups, Algorithms and Programming, Lehrstul D F¨ur
Mathematik, RWTH, Aachen, 1995.
18. H. N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc. 121(1)
(1966) 62–89.
19. P. -H. Zieschang, Cayley graphs of finite groups, J. Algebra 118 (1988) 447–454.