1. M. Grassl, I. Ilić, S. Magliveras, R. Steinwandt, Cryptanalysis of the Tillich-Zémor hash function, J. Cryptology 24 (1) (2011) 148-156.
2. C. Mullan, B. Tsaban, SL2 homomorphic hash functions: worst case to average case reduction and short collision search, Des. Codes Cryptogr. 81 (1) (2016) 83-107.
3. C. Petit, On graph-Based Cryptographic Hash Functions, PhD thesis, Universit Catholique de Louvain, 2009.
4. C. Petit, J. -J. Quisquater, Preimages for the Tillich-Zémor Hash Function, In: A. Biryukov, G. Gong, D. R. Stinson (Eds) Selected Areas in Cryptography, SAC 2010. Lecture Notes in Computer Science, vol. 6544. Springer, Berlin, Heidelberg, 2011.
5. C. Petit, N. Veyrat-Charvillon, J. -J. Quisquater, Efficiency and pseudo-randomness of a variant of Zémor-Tillich hash function, IEEE International Conference on Electronics, Circuits, and Systems, 906-909, ICECS 2008, 31 Aug. - 3 Sept. 2008.
6. J. -P. Tillich, G. Zémor, Hashing with SL2, In: Y. G. Desmedt (Ed.) Advances in Cryptology âĂŤ CRYPTO âĂŹ94. CRYPTO 1994, Lecture Notes in Computer Science, vol 839. Springer, Berlin, Heidelberg, 40-49, 1994.