1-Designs from the group $PSL_{2}(59)$ and their automorphism groups

Document Type : Original Scientific Paper

Author

University of Kashan

Abstract

In this paper, we consider the projective special linear group $PSL_2(59)$
and construct some 1-designs by applying the Key-Moori method on $PSL_2(59)$.
Moreover, we obtain parameters of these designs and their automorphism groups.
It is shown that $PSL_2(59)$ and $PSL_2(59):2$ appear as the automorphism group of the constructed designs.

Keywords

Main Subjects


1. E‎. ‎F‎. ‎Assmus‎, ‎Jr‎. ‎and J‎. ‎D‎. ‎Key‎, ‎Designs and their Codes, Cambridge University Press‎, ‎Cambridge‎, ‎1992‎.
 
2. W‎. ‎Bosma and J‎. ‎Cannon‎, ‎Handbook of Magma Function‎, ‎Department of‎ Mathematics‎, ‎University of Sydney‎, ‎November 1994‎, ‎available online at‎ http://www.magma.maths.usyd.edu.au/magma/‎.
 
3. T‎. ‎Beth‎, ‎D‎. ‎Jungnickel and H‎. ‎Lenz‎, ‎Design Theory‎, ‎Vol‎. ‎1‎, 2nd edition‎, ‎Cambridge University Press‎, Cambridge‎, ‎1999‎.
 
4. M‎. ‎R‎. ‎Darafsheh‎, ‎Designs from the group PSL2(q)‎, ‎q even‎, Des‎. ‎Codes Cryptogr. 39 (2006) 311-316‎.
 
5. M‎. ‎R‎. ‎Darafsheh‎, ‎A‎. ‎R‎. ‎Ashrafi and M‎. ‎Khademi‎, ‎Some designs‎ related to group actions‎, ‎Ars‎. ‎Combin. 86 (2008) 65-75‎.
 
6. M‎. ‎R‎. ‎Darafsheh‎, ‎A‎. ‎R‎. ‎Ashrafi and M‎. ‎Khademi‎, ‎On designs‎ constructed by group actions‎, ‎J‎. ‎Combin‎. ‎Math‎. ‎Combin‎. ‎Comput. 70 (2009) 235-245.
 
7. M‎. ‎R‎. ‎Darafsheh‎, ‎A‎. ‎Iranmanesh and R‎. ‎Kahkeshani‎, ‎Designs‎ from the groups PSL2(q) for certain q‎, Quaest‎. ‎Math. 32 (2009) 1-10‎.
 
8. J‎. ‎D‎. ‎Key and J‎. ‎Moori‎, ‎Designs‎, ‎codes and graphs from the‎ Janko groups J1 and J2, ‎J‎. ‎Combin‎. Math‎. ‎Combin‎. ‎Comput. 40 (2002) 143-159.
 
9. J‎. ‎D‎. ‎Key and J‎. ‎Moori‎, ‎Correction to‎: ‎Codes‎, ‎designs and graphs‎ from the Janko groups J1 and J2, ‎J‎. ‎D‎. Key and J‎. ‎Moori‎, ‎JCMCC 40 (2002)‎ 143-159‎, ‎J‎. ‎Combin‎. ‎Math‎. ‎Combin‎. ‎Comput. 64 (2008) 153‎.
 
10. J‎. ‎D‎. ‎Key‎, ‎J‎. ‎Moori and B‎. ‎G‎. ‎Rodrigues‎, ‎On some designs and‎ codes from primitive representations of some finite simple groups‎, ‎J‎. Combin‎. ‎Math‎. ‎Combin‎. ‎Comput. 45 (2002) 3-19.
 
11. B‎. ‎Rodrigues‎, ‎Codes of Designs and Graphs from Finite Simple‎ Groups‎, ‎Ph.D‎. ‎thesis‎, ‎University of Natal‎, ‎South Africa‎, ‎2003‎.
 
12. J‎. ‎J‎. ‎Rotman‎, ‎An Introduction to the Theory of Groups, ‎4th edition‎, ‎Springer-Verlag‎, ‎1995‎.
 
13. M‎. ‎Suzuki‎, ‎Group Theory I‎, ‎Springer-Verlag‎, ‎Berlin‎, ‎1982‎.