A Multiplicative Version of Forgotten Topological Index

Document Type : Original Scientific Paper

Authors

1 ‎Department of Mathematics‎, ‎Science and Research Branch, ‎Islamic Azad University, ‎Tehran‎, ‎Iran

2 ‎Department of Mathematics‎, Tarbiat Modares University, ‎Tehran‎, ‎Iran

3 ‎Sobolev Institute of Mathematics, ‎Siberian Branch of the Russian Academy of Sciences, ‎Novosibirsk‎, ‎Russia

Abstract

In this paper, we present upper bounds for the multiplicative forgotten topological index of several graph operations such as sum, Cartesian product, corona product, composition, strong product, disjunction and symmetric difference in terms of the F–index and the first Zagreb index of their components. Also, we give explicit formulas for this new graph invariant under two graph operations such as union and Tensor product. Moreover, we obtain the expressions for this new graph invariant of subdivision graphs and vertex – semitotal graphs. Finally, we compare the discriminating ability of indices.

Keywords


[1] A. R. Ashrafi, T. Doslic and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010) 1571–1578.
[2] M. Azari and A. Iranmanesh, Chemical graphs constructed from rooted product and their Zagreb indices, MATCH Commun. Math. Comput. Chem. 70 (2013) 901–919.
[3] M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin. 100 (2011) 113–128.
[4] M. Azari and A. Iranmanesh, Computing the eccentric– distance sum for graph operations, Discrete Appl. Math. 161 (2013) 2827–2840.
[5] M. Azari and A. Iranmanesh, Some inequalities for the multiplicative sum Zagreb index of graph operations, J. Math. Inequal. 9 (2015) 727–738.
[6] M. Azari, A. Iranmanesh and I. Gutman, Zagreb indices of bridge and chain graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 921–938.
[7] M. Azari, A. Iranmanesh and A. Tehranian, A method for calculating an edge version of the Wiener number of a graph operation, Util. Math. 87 (2012) 151–164.
[8] B. Basavanagoud and V. R. Desai, Forgotten topological index and hyper–Zagreb index of generalized transformation graphs, Bull. Math. Sci. Appl. 14 (2016) 1–6.
[9] B. Basavanagoud, I. Gutman and C. S. Gali, On second Zagreb index and coindex of some derived graphs, Kragujevac J. Sci. 37 (2015) 113–121.
[10] N. De, S. M. A. Nayeem and A. Pal, F-index of some graph operations,Discrete Math. Algorithms Appl. 8 (2016) 1650025, 17 pp.
[11] N. De, S. M. A. Nayeem and A. Pal, Reformulated first Zagreb index of some graph operations, Mathematics  3 (2015) 945-960.
[12] J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
[13] M. V. Diudea, QSPR/ QSAR Studies by Molecular Descriptors, Nova Sci. Publ., Huntington, NY, 2000.
[14] T. Došlic, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi, On vertex – degree – based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613–626.
[15] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184–1190.
[16] B. Furtula, I. Gutman, Z. Kovijanić Vuki´cević, G. Lekishvili and G. Popivoda,On an old/new degree – based topological index, Bulletin T.CXLVIII de l' Academie serbe des sciences et des arts (2015) 19–31.
[17] W. Gao, M. R. Farahani and L. Shi, The forgotten topological index of some drug structures, Acta Medica Mediterranea 32 (2016) 579–585.
[18] S. Ghobadi and M. Ghorbaninejad, The forgotten topological index of four operations on some special graphs, Bulletin of Mathematical Sciences and Applications 16 (2016) 89–95.
[19]  I. Gutman, B. Furtula, Zˇ. Kovijanić Vuki´cević and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5–16.
[20] I. Gutman, B. Rušcic, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 33–99.
[21] I. Gutman and  N. Trinajstić, Graph theory and molecular orbitals. Total π–electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
[22] Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs with smallest and greatest zeroth–order general Randic index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425–434.
[23] M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley–Interscience, New York, 2000.
[24] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009) 804–811.
[25] X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57–62.
[26] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.
[27] S. Nikolić, G. Kovačević, A. Miličević, and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
[28] K. Pattabiraman and P. Kandan, Weighted PI index of corona product of graphs, Discret. Math. Algorithms Appl. 6 (2014) 1450055, 9 pp.
[29] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.
[30] M. Wang and H. Hua, More on Zagreb coindices of composite graphs, Int. Math. Forum 7 (2012) 669–673.
[31] Z. Yarahmadi and A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat 26 (2012) 467–472.
[32] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113–118.