[1] S. Abbas, M. Benchohra, N. Hamidi and J. J. Nieto, Hilfer and Hadamard fractional differential equations in Frchet spaces, TWMS J. Pure Appl. Math. 10 (1) (2019) 102 - 116.
[2] S. D. Achar, Symmetric multistep Obrechkoff methods with zero phase-lag for periodic initial value problems of second order differential equations, J. Appl. Math. Comput. 218 (2011) 2237 - 2248.
[3] A. Ashyralyev, D. Agirseven and R. P. Agarwal, Stability estimates for delay parabolic differential and difference equations, Appl. Comput. Math. 19 (2) (2020) 175-204.
[4] A. Ashyralyev, A. S. Erdogan and S. N. Tekalan, An investigation on finite difference method for the first order partial differential equation with the nonlocal boundary condition, Appl. Comput. Math. 18 (3) (2019) 247 - 260.
[5] J. M. Franco and M. Palacios, High-order P-stable multistep methods, J. Comput. Appl. Math. 30 (1) (1990) 1 - 10.
[6] J. D. Lambert and I. A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl. 18 (1976) 189 - 202.
[7] Q. Li and X. Y. Wu, A two-step explicit P-stable method for solving second order initial value problems, Appl. Math. Comput. 138 (2-3) (2003) 435 - 442.
[8] Q. Li and X. Y. Wu, A two-step explicit P-stable method of high phase-lag order for second order IVPs, Appl. Math. Comput. 151 (1) (2004) 17 - 26.
[9] Ch. Lin, Ch. -W. Hsu, T. E. Simos and Ch. Tsitouras, Explicit, semisymmetric, hybrid, six-step, eighth order methods for solving y′′ = f(x; y), Appl. Comput. Math. 18 (3) (2019) 296 - 304.
[10] V. M. Magagula, S. S. Motsa and P. Sibanda, A new bivariate spectral collocation method with quadratic convergence for systems of nonlinear coupled differential equations, Appl. Comput. Math. 18 (2) (2019) 113 - 122.
[11] M. Mehdizadeh Khalsaraei and A. Shokri, A new explicit singularly P-stable four-step method for the numerical solution of second order IVPs, Iranian J. Math. Chem. 11 (1) (2020) 17 - 31.
[12] M. Mehdizadeh Khalsaraei and A. Shokri, The new classes of high order implicit six-step P-stable multiderivative methods for the numerical solution of schrödinger equation, Appl. Comput. Math. 19 (1) (2020) 59 - 86.
[13] M. Mehdizadeh Khalsaraei, A. Shokri and M. Molayi, The new high approximation of stiff systems of first ordinary IVPs arising from chemical reactions by k-step L-stable hybrid methods, Iranian J. Math. Chem. 10 (2) (2019) 181 - 193.
[14] B. Neta, P-stable symmetric super-implicit methods for periodic initial value problems, Comput. Math. Appl. 50 (5-6) (2005) 701 - 705.
[15] S. Harikrishnan, K. Kanagarajan and E. M. Elsayed, Existence and stability results for differential equations with complex order involving Hilfer fractional derivative, TWMS J. Pure Appl. Math. 10 (1) (2019) 94 - 101.
[16] H. Ramos, Development of a new Runge-Kutta method and its economical implementation, Comput. Math. Methods 1 (2) (2019) e1016.
[17] H. Ramos and J. Vigo-Aguiar, On the frequency choice in trigonometrically fitted methods, J. Appl. Math. Lett. 23 (11) (2010) 1378 - 1381.
[18] A. Shokri, A new eight-order symmetric two-step multiderivative method for the numerical solution of second-order IVPs with oscillating solutions, Numer. Algor. 77 (1) (2018) 95 - 109.
[19] A. Shokri and M. Mehdizadeh Khalsaraei, A new singularly P-stable multiderivative method for the numerical solution of chemical second-order IVPs, Iranian J. Math. Chem. (2020) DOI: 10.22052/ijmc.2020.237471.1509.
[20] A. Shokri and M. Mehdizadeh Khalsaraei, An efficient high order fourstep multiderivative method for the numerical solution of second-order IVPs with oscillating solutions, Comput. Math. Methods (2020) DOI: 10.1002/cmm4.1116.
[21] A. Shokri, M. Mehdizadeh Khalsaraei and A. Atashyar, A new two-step hybrid singularly P-stable method for the numerical solution of secondorder IVPs with oscillating solutions, Iranian J. Math. Chem. 11 (2) (2020) 113 - 132.
[22] A. Shokri and A. A. Shokri, Implicit one-step L-stable generalized hybrid methods for the numerical solution of first order initial value problems, Iranian J. Math. Chem. 4 (2) (2013) 201 - 212.
[23] A. Shokri and M. Tahmourasi, A new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation and related IVPs with oscillating solutions, Iranian J. Math. Chem. 8 (2) (2017) 137 - 159.
[24] A. Shokri, A. A. Shokri, Sh. Mostafavi and H. Saadat, Trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems, Iranian J. Math. Chem.6 (2) (2015) 145 - 161.
[25] A. Shokri, J. Vigo-Aguiar, M. Mehdizadeh Khalsaraei and R. Garcia-Rubio, A new class of two-step P-stable TFPL methods for the numerical solution of second order IVPs with oscillating solutions, J. Comput. Appl. Math. 354 (2019) 551 - 561.
[26] A. Shokri, J. Vigo-Aguiar, M. Mehdizadeh Khalsaraei and R. Garcia-Rubio, A new four-step P-stable Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation, J. Comput. Appl. Math. 354 (2019) 569 - 586.
[27] A. Shokri, J. Vigo-Aguiar, M. Mehdizadeh Khalsaraei and R. Garcia-Rubio, A new implicit six-step P-stable method for the numerical solution of Schrödinger equation, Int. J. Comput. Math. 97 (4) (2020) 802 - 817.
[28] T. E. Simos, A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial value problems, Proc. R. Soc. 441 (1993) 283-289.
[29] T. E. Simos and Ch. Tsitouras, High phase-lag order, four-step methods for solving y′′ = f(x; y), Appl. Comput. Math. 17 (3) (2018) 307 - 316.
[30] T. E. Simos and P. S. Williams, A finite-difference method for the numerical solution of the Schrödinger equation, J. Comput. Appl. Math. 79 (2) (1997) 189 - 205.
[31] N. H. Sweilam, A. M. Nagy and A. A. El-Sayed, Sinc-Chebyshev collocation method for time-fractional order telegraph equation, Appl. Comput. Math. 19 (2) (2020) 162 - 174.
[32] T. Gadjiev, S. Aliev and Sh. Galandarova, A priori estimates for solutions to Dirichlet boundary value problems for polyharmonic equations in generalized Morrey spaces, TWMS J. Pure Appl. Math. 9 (2) (2018) 231 - 242.
[33] M. Van Daele and G. Vanden Berghe, P-stable exponentially fitted Obrechkoff methods of arbitrary order for second order differential equations, Numer. Algor. 46 (2007) 333 - 350.
[34] J. Vigo-Aguiar and H. Ramos, Variable stepsize implementation of multistep methods for y′′ = f(x; y; y′), J. Comput. Appl. Math. 192 (2006) 114 - 131.
[35] Z. Wang, D. Zhao, Y. Dai and D. Wu, An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial value problems, Proc. R. Soc. 461 (2005) 1639 - 1658.