[1] S. T. Aldrich, E. E. Enochs, J. R. Garcia Rozas and L. Oyonarte, Covers and envelopes in Grothendieck categories: flat covers of complexes with applications, J. Algebra 243 (2) (2001) 615 - 630.
[2] J. Asadollahi, H. Eshrahgi, R. Hafezi and Sh. Salarian, On the homotopy categories of projective and injective representations of quivers, J. Algebra 346 (2011) 101 - 115.
[3] I. Assem, D. Simson and A. Skowronsky, Elements of the Reprensentation Theory of Associative Algebras, in: Techniques of Representation Theory, vol.1, Cambridge University Press, Cambridge, 2006.
[4] L. Bican, R. EL Bashir and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (4) (2001) 385 - 390.
[5] D. Bravo, E. E. Enochs, A. Iacob, O. Jenda and J.Rada, Cortorsion pairs in C(R-Mod), Rocky Mountain J. Math. 42 (6) (2012) 1787 - 1802.
[6] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (883) (2007) viii+207 pp.
[7] E. Enochs and S. Estrada, Projective representations of quivers, Comm. Algebra 33 (2005) 3467 - 3478.
[8] E. Enochs, S. Estrada and J. R. García Rozas, Injective representations of infinite quivers, Applications. Canadian J. Math. 61 (2) (2009) 315 - 335.
[9] E. E. Enochs and J. R. García Rozas, Flat covers of complexes, J. Algebra 210 (1) (1998) 86 - 102.
[10] H. Eshraghi and A. Hajizamani, The homotopy category of cotorsion flat modules, (2020) preprint.
[11] H. Eshraghi, R. Hafezi, E. Hosseini and Sh. Salarian, Cotorsion pairs in the category of representations of quivers, J. Algebra Appl. 12 (6) (2013) 1350005.
[12] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruynter, Berlin-NewYork, 2000.
[13] E. Enochs, L. Oyonarte and B. Torrecillas, Flat covers and flat representations of quivers, Comm. Algebra 32 (4) (2004) 1319 - 1338.
[14] J. Gillespie, The flat model structure on Ch(R), Trans. Amer. Math. Soc. 356 (8) (2004) 3369 - 3390.
[15] E. Hosseini and Sh. Salarian, A cotorsion theory in the homotopy category of flat quasi-coherent sheaves, Proc. Amer. Math. Soc. 141 (3) (2013) 753-762.
[16] P. Jørgensen, The homotopy category of complexes of projective modules, Adv. Math. 193 (1) (2005) 223 - 232.
[17] H. Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (5) (2005) 1128 - 1162.
[18] D. Murfet, The Mock Homotopy Category of Projectives and Grothendieck Duality, Ph.D thesis, Australian National University, 2007.
[19] A. Neeman, Triangulated Categories, Ann. of Math. Stud., vol. 148, Princeton University Press, Princeton, NJ, 2001.
[20] A. Neeman, The homotopy category of flat modules, and Grothendieck duality, Invent. Math. 174 (2008) 255 - 308.
[21] L. Oyonarte, Cotorsion representations of quivers, Comm. Algebra 29 (12) (2001) 5563 - 5574.
[22] C. A. Weible, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.