[1] N. L. Biggs, Algebraic Graph Theory, Cabridge University Press, New York, 1974.
[2] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981) 1 − 22.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, An Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[4] A. Hassani, M. A. Iranmanesh and C. E. Praeger, On vertex-imprimitive graphs of order a product of three distinct odd primes, J. Combin. Math. Combin. Comput. 28 (1998) 187 − 213.
[5] M. A. Iranmanesh and C. E. Praeger, On non-Cayley vertex-transitive graphs of order a product of three primes, J. Combin. Theory B 81 (2001) 1 − 19.
[6] M. W. Liebeck and J. Saxl, Primitive permutation groups containing an element of large prime order, J. London Math. Soc. 31 (2) (1985) 237 − 249.
[7] B. D. Mckay and C. E. Praeger, Vertex-transitive graphs which are not Cayley graphs I, J. Austral. Math. Soc. 56 (1994) 53 − 63.
[8] B. D. Mckay and C. E. Praeger, Vertex-transitive graphs which are not Cayley graphs II, J. Graph Theory 22 (1996) 321 − 334.
[9] D. Maruˇ siˇ c, Cayley properties of vertex symmetric graphs, Ars. Combin. 16B (1983) 297 − 302.
[10] D. Maruˇ siˇ c, Vertex-transitive graphs and digraphs of order p k , Ann. Disc. Math. 27 (1985) 115 − 128.
[11] D. Maruˇ siˇ c, R. Scapellato and B. Zgrabliˇ c, On quasiprimitive pqr-graphs, Algebra Coll. 2 (1995) 295 − 314.
[12] C. E. Praeger, An O’Nan-Scott Theorem for finite quasiprimitive permutation groups, and an application to 2-transitive groups, J. London. Math. Soc. 47 (2) (1993) 227 − 239.
[13] A. Seress, On vertex-transitive non-Cayley graphs of order pqr, Discrete Math. 182 (1998) 279 − 292.