F-Hypergroups of Type U on the Right

Document Type : Original Scientific Paper

Authors

Department of Mathematics, Yazd University, Yazd, I. R. Iran

Abstract

In this paper, first we introduce F-hypergroups of type U on the right. We will prove that every right scalar identity of an F-hypergroup of type U on the right of size ≤ 5 is also a left identity. Also, we will classify F-hypergroups of type U on the right of order 2 or 3 up to an isomorphism. Then, we will study cyclic F-semihypergroups and finally by using regular relations we construct right reversible quotient F-hypergroups.

Keywords


[1] P. Corsini, Prolegomena of Hypergroup Theory, Aviani editor, Second edition, 1993.
[2] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.
[3] B. Davvaz, Construction of n-ary F-polygroups, Inform. Sci. 275 (2014) 199−212.
[4] B. Davvaz, Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
[5] B. Davvaz, F. Bardestani, Hypergroups of type U on the right of size six, Arab. J. Sci. Eng. 36 (2011) 487 − 499.
[6] M. De Salvo, D. Fasino, D. Freni and G. Lo Faro, Hypergroups with a strongly unilateral identity, J. Mult.-Valued Logic Soft Comput. 21 (1-2) (2013) 165−182.
[7] M. De Salvo, D. Fasino, D. Freni and G. Lo Faro, Isomorphism classes of the hypergroups of type U on the right of size five, Comput. Math. Appl. 58 (2) (2009) 390 − 402.
[8] M. De Salvo, D. Fasino, D. Freni and G. Lo Faro, On strongly conjugable extensions of hypergroups with scalar identity, Filomat 27 (6) (2013) 977 − 994.
[9] M. De Salvo, D. Freni and G. Lo Faro, A new family of hypergroups and hypergroups of type U on the right of size five, Far East J. Math. Sci. (FJMS) 26 (2) (2007) 393 − 418.
[10] M. De Salvo, D. Freni and G. Lo Faro, Hypergroups of type U on the right of size five. II, Mat. Vesnik 60 (1) (2008) 23 − 45.
[11] M. De Salvo, D. Freni and G. Lo Faro, On the hypergroups of type U on the right of size five, with scalar identity, J. Mult.-Valued Logic Soft Comput. 17 (5-6) (2011) 425 − 441.
[12] M. Farshi and B. Davvaz, Fn -Hypergroups based on fuzzy hyperoperations and fundamental relations, J. Intell. Fuzzy Systems 26 (2014) 1453 − 1464.
[13] M. Farshi and B. Davvaz, On isomorphism theorems of F n -polygroups, J. Sci. I. R. Iran 24 (3) (2013) 259 − 267.
[14] D. Fasino and D. Freni, Existence of proper semihypergroups of type U on the right, Discrete Math. 307 (22) (2007) 2826 − 2836.
[15] D. Fasino and D. Freni, Minimal order semihypergroups of type U on the right, Mediterr. J. Math. 5 (3) (2008) 295 − 314.
[16] D. Freni, Structure des hypergroupes quotients et des hypergroupes de type U (Structure of quotient hypergroups and of hypergroups of type U), Ann. Sci. Univ. Clermont-Ferrand II Math. 22 (1984) 51 − 77.
[17] D. Freni and M. Gutan, Sur les hypergroupes de type U, Mathematica (Cluj) 36 (59) (1994) 25 − 32.
[18] F. Marty, Sur une generalization de la notion de group, In 8th Congress Math. Scandenaves (1934) 45 − 49.
[19] Y. Sureau and D. Freni, Hypergroupes de type U et homologie de complexes, Algebra Universalis 35 (1) (1996) 34 − 62.
[20] T. Vougiouklis, Hyperstructures and Their Representations, Aviani editor, Hadronic Press, Palm Harbor, USA, 1994.
[21] L. A. Zadeh, Fuzzy sets, Inf. and Control 8 (1965) 338 − 353.
[22] M. Zahedi and A. Hasankhani, F-polygroups. I, J. Fuzzy Math. 4 (3) (1996) 533 − 548.
[23] M. Zahedi and A. Hasankhani, F-polygroups. II, Inform. Sci. 89 (3-4) (1996) 225 − 243.