[1] R. Baer, Groups with preassigned central and central quotient groups, Trans. Amer. Math. Soc. 44 (1938) 387 - 412.
[2] F. R. Beyl, U. Felgner and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979) 161 - 177.
[3] J. Burns and G. Ellis, On the nilpotent multipliers of a group, Math. Z. 226 (1997) 405 - 428.
[4] W. Burnside, Theory of Groups of Finite Order, 2nd, ed., Cambridge University Press, Cambridge, 1911.
[5] G. Ellis, On the capability of groups, Proc. Edinb. Math. Soc. 41 (1998) 487 - 495.
[6] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940) 130 - 141.
[7] P. Hall, The construction of soluble groups, J. Reine Angew. Math. 182 (1940) 206 - 214.
[8] M. Hall and J. K. Senior, The Groups of Order 2n(n ≤ 6), Macmillan, New York, 1964.
[9] M. Hassanzadeh and R. Hatamian, An approach to capable groups and Schur’s theorem, Bull. Aust. Math. Soc. 92 (2015) 52 - 56.
[10] N. S. Hekster, On the structure of n-isoclinism classes of groups, J. Pure Appl. Algebra 40 (1986) 63 - 85.
[11] I. M. Isaacs, Derived subgroups and centers of capable groups, Proc. Amer. Math. Soc. 129 (2001) 2853 - 2859.
[12] M. R. R. Moghaddam and S. Kayvanfar, A new notion derived from varieties of groups, Algebra Colloq. 4 (1997) 1 - 11.
[13] K. Podosky and B. Szegedy, Bound for the index of the center in capable groups, Proc. Amer. Math. Soc. 133 (2005) 3441 - 3445.
[14] S. Rashid, N. H. Sarmin, A. Erfanian and N. M. Mohd Ali, On the nonabelian tensor square and capability of groups of order p2q, Arch. Math. 97 (2011) 299 - 306.
[15] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, Berlin, 1982.
[16] D. R. Taunt, On A-groups, Math. Proc. Cambridge Philos. Soc. 45 (1949) 24 - 42.