Schwinger Pair Creation by a Time-Dependent Electric Field in de Sitter Space with the Energy Density E_μ E^μ=E^2 a^2(τ)

Document Type : Original Scientific Paper

Authors

Department of Physics, University of Kashan, 87317-53135, I. R. Iran

Abstract

We investigate Schwinger pair creation of charged scalar particles from a time-dependent electric field background in (1+3)-dimensional de Sitter spacetime. Since the field's equation of motion has no exact analytical solution, we employ \emph{Olver's uniform asymptotic approximation method} to find its analytical approximate solutions. Depending on the value of the electric field $E$, and the particle's mass $m$, and wave vector $\bfk$, the equation of motion has two turning points, whose different natures (real, complex, or double) lead to different pair production probability. More precisely, we find that for the turning points to be real and single, $m$ and $\bfk$ should be small, and the more smaller are the easier to create the particles. On the other hand, when $m$ or $\bfk$ is large enough, both turning points are complex, and the pair creation is exponentially suppressed. In addition, we study the pair creation in the weak electric field limit, and find that the semi-classical electric current responds as $E^{1-2\sqrt{\mu^2}}\!\left(1-\ln E\right)$, where $\mu^2=\frac94-\frac{\mds^2}{H^2}$. Thus, below a critical mass $m_{\mathrm{cr}}=\sqrt{2} H$, the current exhibits the infrared hyperconductivity.

Keywords


[1] M. Banyeres, G. Domènech and J. Garriga, Vacuum birefringence and the Schwinger effect in (3+1) de Sitter, J. Cosmol. Astropart. Phys. 10 (2018) 023.
[2] D. Baumann and L. McAllister,
Inflation and String Theory, Cambridge University Press, Cambridge, UK, 2015.
[3] E. Bavarsad, C. Stahl and S. -S. Xue, Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime,
Phys. Rev. D 94 (2016) 104011.
[4] R. G. Cai and S. P. Kim, One-loop effective action and Schwinger effect in (anti-) de Sitter space,
J. High Energy Phys. 09 (2014) 072.
[5] S. M. Carroll, The Cosmological Constant,
Living Rev. Relativity 3 (2001) 1 - 56.
[6] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems,
Rev. Mod. Phys. 84 (2012) 1117 - 1228.
[7] R. Emami, H. Firouzjahi, S. M. Sadegh Movahed and M. Zarei, Anisotropic inflation from charged scalar fields,
J. Cosmol. Astropart. Phys. 02 (2011) 005.
[8] M. B. Fröb, J. Garriga, S. Kanno, M. Sasaki, J. Soda, T. Tanaka and A. Vilenkin, Schwinger effect in de Sitter space,
J. Cosmol. Astropart. Phys. 04 (2014) 009.
[9] J. Garriga, Pair production by an electric field in
(1+1)-dimensional de Sitter space, Phys. Rev. D 49 (1994) 6343 - 6346.
[10] F. Gelis and N. Tanji, Schwinger mechanism revisited,
Prog. Part. Nucl. Phys. 87 (2016) 1 - 49.
[11] J.-J. Geng, B.-F. Li, J. Soda, A. Wang, Q. Wu and T. Zhu, Schwinger pair production by electric field coupled to inflaton,
J. Cosmol. Astropart. Phys. 02 (2018) 018.
[12] M. Giovannini, Spectator electric fields, de Sitter spacetime, and the Schwinger effect,
Phys. Rev. D 97 (2018) 061301(R).
[13] I. S. Gradshteyn and I. M. Ryzhik,
Table of Integrals, Series and Products, 7th ed., Academic Press, Amsterdam, 2007.
[14] S. Haouat and R. Chekireb, Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson-Walker spacetime,
Eur. Phys. J. C 72 (2012) 2034.
[15] S. Haouat and R. Chekireb, Schwinger effect in a Robertson-Walker spacetime, Int. J. Theor. Phys. 51 (2012) 1704 - 1714.
[16] T. Hayashinaka, T. Fujita and J. Yokoyama, Fermionic Schwinger effect and induced current in de Sitter space,
J. Cosmol. Astropart. Phys. 07 (2016) 010.
[17] T. Hayashinaka and J. Yokoyama, Point splitting renormalization of Schwinger induced current in de Sitter spacetime,
J. Cosmol. Astropart. Phys. 07 (2016) 012.
[18] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons,
Z. Phys. 98 (1936) 714 - 732.
[19] S. P. Kim and D. N. Page, Schwinger pair production in
dS2 and AdS2, Phys. Rev. D 78 (2008) 103517.
[20] H. Kitamoto, Schwinger effect in inflation-driven electric field,
Phys. Rev. D 98 (2018) 103512.
[21] T. Kobayeshi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early Universe,
J. High Energy Phys. 10 (2014) 166.
[22] J. Martin,
Inflationary Perturbations: The Cosmological Schwinger Effect, in: Inflationary Cosmology, Lecture Notes in Physics, vol. 738, 193 - 241, Springer-Verlag, Berlin, 2007.
[23] S. Moradi, Particle production in cosmological spacetimes with electromagnetic fields,
Mod. Phys. Lett. A 24 (2009) 1129 - 1136.
[24] A. H. Nayfeh,
Perturbation Methods, Wiley, New York, 1973.
[25] F. W. J. Olver, Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders,
J. Res. Nat. Bur. Standards, Sect. B: Math. and Math. Phys. 63B (1959) 131 - 169.
[26] F. W. J. Olver, Second-order linear differential equations with two turning points,
Philos. Trans. Roy. Soc. A 278 (1975) 137 - 174.
[27] F. W. J. Olver,
Asymptotics and Special Functions, AKP Classics, Wellesley, MA, 1997.
[28] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark,
NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, UK, 2010.
[29] L. Parker and D. Toms,
Quantum Field Theory in Curved Space: Quantized Fields and Gravity, Cambridge University Press, Cambridge, UK, 2009.
[15] S. Haouat and R. Chekireb, Schwinger effect in a Robertson-Walker spacetime, Int. J. Theor. Phys. 51 (2012) 1704 - 1714.
[16] T. Hayashinaka, T. Fujita and J. Yokoyama, Fermionic Schwinger effect and induced current in de Sitter space,
J. Cosmol. Astropart. Phys. 07 (2016) 010.
[17] T. Hayashinaka and J. Yokoyama, Point splitting renormalization of Schwinger induced current in de Sitter spacetime,
J. Cosmol. Astropart. Phys. 07 (2016) 012.
[18] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons,
Z. Phys. 98 (1936) 714 - 732.
[19] S. P. Kim and D. N. Page, Schwinger pair production in
dS2 and AdS2, Phys. Rev. D 78 (2008) 103517.
[20] H. Kitamoto, Schwinger effect in inflation-driven electric field,
Phys. Rev. D 98 (2018) 103512.
[21] T. Kobayeshi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early Universe,
J. High Energy Phys. 10 (2014) 166.
[22] J. Martin,
Inflationary Perturbations: The Cosmological Schwinger Effect, in: Inflationary Cosmology, Lecture Notes in Physics, vol. 738, 193 - 241, Springer-Verlag, Berlin, 2007.
[23] S. Moradi, Particle production in cosmological spacetimes with electromagnetic fields,
Mod. Phys. Lett. A 24 (2009) 1129 - 1136.
[24] A. H. Nayfeh,
Perturbation Methods, Wiley, New York, 1973.
[25] F. W. J. Olver, Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders,
J. Res. Nat. Bur. Standards, Sect. B: Math. and Math. Phys. 63B (1959) 131 - 169.
[26] F. W. J. Olver, Second-order linear differential equations with two turning points,
Philos. Trans. Roy. Soc. A 278 (1975) 137 - 174.
[27] F. W. J. Olver,
Asymptotics and Special Functions, AKP Classics, Wellesley, MA, 1997.
[28] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark,
NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, UK, 2010.
[29] L. Parker and D. Toms,
Quantum Field Theory in Curved Space: Quantized Fields and Gravity, Cambridge University Press, Cambridge, UK, 2009.

[30] R. Ruffini, G. Vereshchagin and S. S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Phys. Rept. 487 (2010) 1 - 140.
[31] F. Sauter, Über das verhalten eines electrons im homogenen electrischen feld nach der relativistischen theorie Diracs, Z. Phys. 69 (1931) 742 - 764.
[32] J. S. Schwinger, On gauge invariance and vacuum polarization,
Phys. Rev. 82 (1951) 664 - 679.
[33] S. Shakeri, M. A. Gorji and H. Firouzjahi, Schwinger mechanism during inflation,
Phys. Rev. D 99 (2019) 103525.
[34] R. Sharma and S. Singh, Multifaceted Schwinger effect in de Sitter space, 
Phys. Rev. D 96 (2017) 025010.
[35] K. Sogut, A. Havare, On the scalar particle creation by electromagnetic fields in Robertson-Walker spacetime,
Nucl. Phys. B 901 (2015) 76 - 84.
[36] C. Stahl, E. Strobel and S.-S. Xue, Fermionic current and Schwinger effect in de Sitter spacetime,
Phys. Rev. D 93 (2016) 025004.
[37] V. M. Villalba, Creation of spin-
1 2 particles by an electric field in de Sitter space, Phys. Rev. D 52 (1995) 3742 - 3745.
[38] V. M. Villalba and W. Greiner, Creation of scalar and Dirac particles in the presence of a time-varying electric field in an anisotropic Bianchi type I universe,
Phys. Rev. D 65 (2001) 025007.
[39] M.-a. Watanabe, S. Kanno and J. Soda, Inflationary universe with anisotropic hair,
Phys. Rev. Lett. 102 (2009) 191302.
[40] E. T. Whittaker and G. N. Watson,
A Course of Modern Analysis, 2nd ed., Cambridge University Press, Cambridge, UK, 1915.
[41] T. Zhu, A. Wang, G. Cleaver, K. Kirsten and Q. Sheng, Constructing analytical solutions of linear perturbations of inflation with modified dispersion
relations,
Int. J. Modern Phys. A 29 (2014) 1450142.
[42] T. Zhu, A. Wang, G. Cleaver, K. Kirsten and Q. Sheng, Inflationary cosmology with nonlinear dispersion relations,
Phys. Rev. D 89 (2014) 043507.
[43] T. Zhu, A. Wang, G. Cleaver, K. Kirsten and Q. Sheng, Gravitational quantum effects on power spectra and spectral indices with higher-order corrections,
Phys. Rev. D 90 (2014) 063503.
[44] T. Zhu, A. Wang, K. Kirsten, G. Cleaver and Q. Sheng, High-order primordial perturbations with quantum gravitational effects,
Phys. Rev. D 93 (2016) 123525.