[1] M. Banyeres, G. Domènech and J. Garriga, Vacuum birefringence and the Schwinger effect in (3+1) de Sitter, J. Cosmol. Astropart. Phys. 10 (2018) 023.
[2] D. Baumann and L. McAllister, Inflation and String Theory, Cambridge University Press, Cambridge, UK, 2015.
[3] E. Bavarsad, C. Stahl and S. -S. Xue, Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime, Phys. Rev. D 94 (2016) 104011.
[4] R. G. Cai and S. P. Kim, One-loop effective action and Schwinger effect in (anti-) de Sitter space, J. High Energy Phys. 09 (2014) 072.
[5] S. M. Carroll, The Cosmological Constant, Living Rev. Relativity 3 (2001) 1 - 56.
[6] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1117 - 1228.
[7] R. Emami, H. Firouzjahi, S. M. Sadegh Movahed and M. Zarei, Anisotropic inflation from charged scalar fields, J. Cosmol. Astropart. Phys. 02 (2011) 005.
[8] M. B. Fröb, J. Garriga, S. Kanno, M. Sasaki, J. Soda, T. Tanaka and A. Vilenkin, Schwinger effect in de Sitter space, J. Cosmol. Astropart. Phys. 04 (2014) 009.
[9] J. Garriga, Pair production by an electric field in (1+1)-dimensional de Sitter space, Phys. Rev. D 49 (1994) 6343 - 6346.
[10] F. Gelis and N. Tanji, Schwinger mechanism revisited, Prog. Part. Nucl. Phys. 87 (2016) 1 - 49.
[11] J.-J. Geng, B.-F. Li, J. Soda, A. Wang, Q. Wu and T. Zhu, Schwinger pair production by electric field coupled to inflaton, J. Cosmol. Astropart. Phys. 02 (2018) 018.
[12] M. Giovannini, Spectator electric fields, de Sitter spacetime, and the Schwinger effect, Phys. Rev. D 97 (2018) 061301(R).
[13] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed., Academic Press, Amsterdam, 2007.
[14] S. Haouat and R. Chekireb, Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson-Walker spacetime, Eur. Phys. J. C 72 (2012) 2034.
[15] S. Haouat and R. Chekireb, Schwinger effect in a Robertson-Walker spacetime, Int. J. Theor. Phys. 51 (2012) 1704 - 1714.
[16] T. Hayashinaka, T. Fujita and J. Yokoyama, Fermionic Schwinger effect and induced current in de Sitter space, J. Cosmol. Astropart. Phys. 07 (2016) 010.
[17] T. Hayashinaka and J. Yokoyama, Point splitting renormalization of Schwinger induced current in de Sitter spacetime, J. Cosmol. Astropart. Phys. 07 (2016) 012.
[18] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714 - 732.
[19] S. P. Kim and D. N. Page, Schwinger pair production in dS2 and AdS2, Phys. Rev. D 78 (2008) 103517.
[20] H. Kitamoto, Schwinger effect in inflation-driven electric field, Phys. Rev. D 98 (2018) 103512.
[21] T. Kobayeshi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early Universe, J. High Energy Phys. 10 (2014) 166.
[22] J. Martin, Inflationary Perturbations: The Cosmological Schwinger Effect, in: Inflationary Cosmology, Lecture Notes in Physics, vol. 738, 193 - 241, Springer-Verlag, Berlin, 2007.
[23] S. Moradi, Particle production in cosmological spacetimes with electromagnetic fields, Mod. Phys. Lett. A 24 (2009) 1129 - 1136.
[24] A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973.
[25] F. W. J. Olver, Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders, J. Res. Nat. Bur. Standards, Sect. B: Math. and Math. Phys. 63B (1959) 131 - 169.
[26] F. W. J. Olver, Second-order linear differential equations with two turning points, Philos. Trans. Roy. Soc. A 278 (1975) 137 - 174.
[27] F. W. J. Olver, Asymptotics and Special Functions, AKP Classics, Wellesley, MA, 1997.
[28] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, UK, 2010.
[29] L. Parker and D. Toms, Quantum Field Theory in Curved Space: Quantized Fields and Gravity, Cambridge University Press, Cambridge, UK, 2009.
[15] S. Haouat and R. Chekireb, Schwinger effect in a Robertson-Walker spacetime, Int. J. Theor. Phys. 51 (2012) 1704 - 1714.
[16] T. Hayashinaka, T. Fujita and J. Yokoyama, Fermionic Schwinger effect and induced current in de Sitter space, J. Cosmol. Astropart. Phys. 07 (2016) 010.
[17] T. Hayashinaka and J. Yokoyama, Point splitting renormalization of Schwinger induced current in de Sitter spacetime, J. Cosmol. Astropart. Phys. 07 (2016) 012.
[18] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714 - 732.
[19] S. P. Kim and D. N. Page, Schwinger pair production in dS2 and AdS2, Phys. Rev. D 78 (2008) 103517.
[20] H. Kitamoto, Schwinger effect in inflation-driven electric field, Phys. Rev. D 98 (2018) 103512.
[21] T. Kobayeshi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early Universe, J. High Energy Phys. 10 (2014) 166.
[22] J. Martin, Inflationary Perturbations: The Cosmological Schwinger Effect, in: Inflationary Cosmology, Lecture Notes in Physics, vol. 738, 193 - 241, Springer-Verlag, Berlin, 2007.
[23] S. Moradi, Particle production in cosmological spacetimes with electromagnetic fields, Mod. Phys. Lett. A 24 (2009) 1129 - 1136.
[24] A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973.
[25] F. W. J. Olver, Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders, J. Res. Nat. Bur. Standards, Sect. B: Math. and Math. Phys. 63B (1959) 131 - 169.
[26] F. W. J. Olver, Second-order linear differential equations with two turning points, Philos. Trans. Roy. Soc. A 278 (1975) 137 - 174.
[27] F. W. J. Olver, Asymptotics and Special Functions, AKP Classics, Wellesley, MA, 1997.
[28] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, UK, 2010.
[29] L. Parker and D. Toms, Quantum Field Theory in Curved Space: Quantized Fields and Gravity, Cambridge University Press, Cambridge, UK, 2009.
[30] R. Ruffini, G. Vereshchagin and S. S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Phys. Rept. 487 (2010) 1 - 140.
[31] F. Sauter, Über das verhalten eines electrons im homogenen electrischen feld nach der relativistischen theorie Diracs, Z. Phys. 69 (1931) 742 - 764.
[32] J. S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 - 679.
[33] S. Shakeri, M. A. Gorji and H. Firouzjahi, Schwinger mechanism during inflation, Phys. Rev. D 99 (2019) 103525.
[34] R. Sharma and S. Singh, Multifaceted Schwinger effect in de Sitter space, Phys. Rev. D 96 (2017) 025010.
[35] K. Sogut, A. Havare, On the scalar particle creation by electromagnetic fields in Robertson-Walker spacetime, Nucl. Phys. B 901 (2015) 76 - 84.
[36] C. Stahl, E. Strobel and S.-S. Xue, Fermionic current and Schwinger effect in de Sitter spacetime, Phys. Rev. D 93 (2016) 025004.
[37] V. M. Villalba, Creation of spin- 1 2 particles by an electric field in de Sitter space, Phys. Rev. D 52 (1995) 3742 - 3745.
[38] V. M. Villalba and W. Greiner, Creation of scalar and Dirac particles in the presence of a time-varying electric field in an anisotropic Bianchi type I universe, Phys. Rev. D 65 (2001) 025007.
[39] M.-a. Watanabe, S. Kanno and J. Soda, Inflationary universe with anisotropic hair, Phys. Rev. Lett. 102 (2009) 191302.
[40] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 2nd ed., Cambridge University Press, Cambridge, UK, 1915.
[41] T. Zhu, A. Wang, G. Cleaver, K. Kirsten and Q. Sheng, Constructing analytical solutions of linear perturbations of inflation with modified dispersion relations, Int. J. Modern Phys. A 29 (2014) 1450142.
[42] T. Zhu, A. Wang, G. Cleaver, K. Kirsten and Q. Sheng, Inflationary cosmology with nonlinear dispersion relations, Phys. Rev. D 89 (2014) 043507.
[43] T. Zhu, A. Wang, G. Cleaver, K. Kirsten and Q. Sheng, Gravitational quantum effects on power spectra and spectral indices with higher-order corrections, Phys. Rev. D 90 (2014) 063503.
[44] T. Zhu, A. Wang, K. Kirsten, G. Cleaver and Q. Sheng, High-order primordial perturbations with quantum gravitational effects, Phys. Rev. D 93 (2016) 123525.