Three Constructions on Graphs and Distance-Based Invariants

Document Type : Special Issue: AIMC 51

Author

Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, Kazerun, Iran

10.22052/mir.2021.242881.1292

Abstract

Many graphs are constructed from simpler ones by the use of operations on graphs, and as a consequence, the properties of the resulting constructions are strongly related to the properties of their constituents. This paper is concerned with computing some distance-based graph invariants for three constructions on graphs namely double graph, extended double cover, and strong double graph.

Keywords


[1] N. Akhter, M. Amin, M. Jamil and W. Gao, Some distance-based topological indices of strong double graphs, Asian J. Math. Appl. 2018 (2018) ama0475.
[2] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83 − 96.
[3] A. R. Ashrafi and M. Ghorbani, A study of fullerenes by MEC polynomials, Electron. Mater. Lett. 6 (2) (2010) 87 − 90.
[4] M. Azari, Further results on Zagreb eccentricity coindices, Discrete Math. Alg. Appl. 12 (6) (2020) 2050075.
[5] M. Azari and F. Falahati-Nezhad, Some results on forgotten topological coindex, Iranian J. Math. Chem. 10 (4) (2019) 307 − 318.
[6] S. Ediz, M. R. Farahani and M. Imran, On novel harmonic indices of certain nanotubes, Int. J. Adv. Biotechnol. Res. 8 (4) (2017) 277 − 282.
[7] S. Gupta, M. Singh and A. K. Madan, Connective eccentricity index: A novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (2000) 18 − 25.
[8] S. Gupta, M. Singh and A. K. Madan, Predicting anti-HIV activity: Computational approach using a novel topological descriptor, J. Comput. Aided. Mol. Des. 15 (7) (2001) 671 − 678.
[9] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (4) (1972) 535 − 538.
[10] L. H. Hall and L. B. Kier, Molecular Connectivity in Chemistry and Drug Research, Academic Press, Boston, 1976.
[11] H. Hua, S. Zhang and K. Xu, Further results on the eccentric distance sum, Discrete Appl. Math. 160 (2012) 170 − 180.
[12] A. Ilić and N. Milosavljević, The Weighted vertex PI index, Math. Comput. Model. 57 (2013) 623 − 631.
[13] M. Imran and S. Akhter, Degree-based topological indices of double graphs and strong double graphs, Discrete Math. Alg. Appl. 9 (5) (2017) 1750066.
[14] M. K. Jamil, Distance-based topological indices and double graph, Iranian J. Math. Chem. 8 (1) (2017) 83 − 91.
[15] P. V. Khadikar, On a novel structural descriptor PI, Natl. Acad. Sci. Lett. 23 (2000) 113 − 118.
[16] M. A. Malik, Two degree-distance based topological descriptors of some product graphs, Discrete Appl. Math. 236 (C) (2018) 315 − 328.
[17] E. Munarini, C. P. Cippo, A. Scagliola and N. Z. Salvi, Double graphs, Discrete Math. 308 (2008) 242 − 254.
[18] V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273 − 282.
[19] D. Vukičević and A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57 (2010) 524−538.
[20] K. Xu, K. C. Das and A. D. Maden, On a novel eccentricity-based invariant of a graph, Acta Math. Sin. (Engl. Ser.) 32 (1) (2016) 1477 − 1493.