The Use of Mathematical Finite Element Method to find the Optimum Waves Amplification by a Novel Elliptical Waveguide

Document Type : Original Scientific Paper

Author

Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, I.R. of Iran

Abstract

In this paper, a combinatorial elliptic-circular waveguide is introduced to amplify electromagnetic waves. The cross-section of this waveguide is elliptic and filled by a dielectric material, whereas two axial circular hollows have been created in it. One of the hollows has been filled by an unmagnetized cold plasma and a relativistic pencil electron beam(RPEB) is injected inside other hollow. By applying an adaptive finite element method(FEM), electromagnetic slow waves amplification in the waveguide is investigated. We study variations of growth rate of excited microwaves under influence of different factors. The purpose of investigating the effect of various parameters of this waveguide such as plasma and electron beam radiuses, the RPEB location, dielectric constant and beam current intensity; is to introduce the waveguide with optimal configuration and parameters to obtain the highest wave growth rate.

Keywords


[1] A. F. Alexandrov, L. S. Bogdankovich and A. A. Rukhadze, Principle of Plasma Electrodynamics, Springer, Heidelberg, 1984. 
[2] A. C. Boucouvalas, C. Papageorgiou and E. Georgantzos, Elliptical fibre dielectric waveguides: a transverse transmission line analysis, IET Optoelectronic 14 (2020) 1-9.
[3] C. Bowness, On the Efficiency of Single and Multiple Elliptical Laser Cavities,
Appl. Opt. 4 (1965) 103-107.
[4] B. Gimeno and M. Guglielmi, Full wave network representation for rectangular, circular, and elliptical to elliptical waveguide junctions,
IEEE Trans. Microw. Theory Tech. 45(1997) 376-384.
[5] J. C. Gutierrez-Vega, R. M. Rodriguez-Dagnino and S. Chavez-Cerda, Attenuation characteristics in confocal annular elliptic waveguides and resonators,
IEEE Trans. Microw. Theory Tech. 50 (2002) 1095-1100.
[6] K. Halterman, S. Feng and P. L. Overfelt, Guided Modes of Elliptical Metamaterial Waveguides,
Phys. Rev. A 76 (2007) 013834.
[7] B. Jazi, Z. Rahmani, E. Heidari-Semiromi and A. Abdoli-Arani, Time growth rate and field profiles of hybrid modes excited by a relativistic elliptical electron beam in an elliptical metallic waveguide with dielectric rod,
Phys. Plasmas 19 (2012) 102110.
[8] J. Jin,
The Finite Element Method in Electromagnetics John Wiley and Sons. Inc, New York, 2002.
[9] V. Kamra and A. Dreher, Analysis of elliptical waveguides with anisotropic dielectric layers,
IEEE Access 8 (2020) 31444-31452.
[10] A. Kusiek, R. Lech, W. Marynowski and J. Mazur, An analysis of multistrip line configuration on elliptical cylinder,
IEEE Trans. Microw. Theory Tech. 63 (2015) 1800-1808.
[11] M. Lu, Z. Hu, Z. Peng, X. Chen, F. Xu, K. Zhao, M. Matsumoto, F. Wei and Zh. Yang, Finite element analysis of the dominant mode variation in groove guide,
Int. J. Infrared Millimeter Waves 21 (2000) 63-76.
[12] M. Lu and P. Leonard, Edge based finite element analysis of the field patterns in V-shaped microshield line,
Microw. Opt. Technol. Lett. 41 (2004) 43-47.
[13] N. Marcuritz (Ed.),
Waveguide Handbook, Mc Graw-Hill, New York, 1951.
[14] L. Moreau, A. Velichko and P. D. Wilcox, Accurate finite element modelling of guided wave scattering from irregular defects,
NDT and E Int. 45 (2012) 46-54.
[15] K. Okamoto,
Fundamentals of Optical Waveguides, Academic press, New York, 2000. 
[16] S. J. Orfanidis, Electromagnetic Waves and Antennas, ECE Department, Rutgers University, 2016.
[17] Z. Rahmani, E. Heidari-Semiromi, A. Abdoli-Arani, Study on the influence of two relativistic circular electron beam columns placed in an elliptical dielectric waveguide on excitation and amplification of electromagnetic waves using finite-element method,
IEEE Trans. Plasma Sci. 47 (2019) 1254-1261.
[18] Z. Rahmani, E. Heidari-Semiromi and S. Safari, Excitation of THz hybrid modes in an elliptical dielectric rod waveguide with a cold collisionless unmagnetized plasma column by an annular electron beam,
Phys. Plasmas 23 (2016) 062113.
[19] Z. Rahmani, B. Jazi and E. Heidari-Semiromi, Terahertz electromagnetic wave generation and amplification by an electron beam in the elliptical plasma waveguides with dielectric rod,
Phys. Plasmas 21 (2014) 092122.
[20] S. M. Saad, Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides,
IEEE Trans. Microw. Theory Tech. 33 (1985) 894 - 899.
[21] S. P. Savaidis and J. A. Roumeliotis, Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic dielectric cylinder,
IEEE Trans. Antennas Propag. 52 (2004) 1180-1185.
[22] S. P. Savaidis and J. A. Roumeliotis, Scattering by an infinite elliptic dielectric cylinder coating eccentrically a circular metallic or dielectric cylinder,
IEEE Trans. Microw. Theory Tech. 45 (1997) 1792-1800.
[23] A. K. Shahi, V. Singh and S. P. Ojha, Dispersion characteristics of electromagnetic waves in circularly cored highly birefringent waveguide having elliptical cladding,
Prog. Electromagn Res. Pier. 75 (2007) 51-62.
[24] Y. Shen and V. Giurgiutiu, Combined analytical FEM approach for efficient simulation of Lamb wave damage detection,
Ultrasonics 69 (2016) 116-128.
[25] S. Shiraiwa, O. Meneghini, R. Parker, P. Bonoli, M. Garrett, M. C. Kaufman, J. C. Wright and S. Wukitch, Plasma wave simulation based on a versatile finite element method solver,
Phys. Plasmas 17 (2010) 056119.
[26] C. Vassallo,
Optical Waveguide Concepts, Elsevier, Amsterdam, Chap. 3-3, 1991.
[27] Y. Zhang, Z. Y. Zhang, D. M. Lu, D. Y. Wang, M. Liu, P. D. Zhao and J. Q. Yao, Optimal design of hollow elliptical waveguide for THz radiation,
J. Phys.: Conf. Ser. 276 (2011) 012230. 
[28] G. P. Zouros and J. A. Roumeliotis, Scattering by an Infinite Dielectric Cylinder Having an Elliptic Metal Core: Asymptotic Solutions, IEEE Trans. Antennas. Propag. 58 (2010) 3299-3309.