[1] S. A. Campbell and Y. Yuan, Zero singularities of codimension two and three in delay differential equations, Nonlinearity 21 (11) (2008) 2671 − 2691.
[2] J. Cao, W. Yu and Y. Qu, A new complex network model and convergence dynamics for reputation computation in virtual organizations, Phys. Lett. A 356 (6) (2006) 414 − 425.
[3] T. Chen, H. L. He and G. M. Church Modeling gene expression with differential equations, Pac. Symp. Biocomput. (1999) 29 − 40.
[4] Z. Dadi, Dynamics of two-cell systems with discrete delays, Adv. Comput. Math. 43 (3) (2017) 653 − 676.
[5] Z. Dadi, Z. Afsharnezhad and N. Pariz, Stability and bifurcation analysis in the delay-coupled nonlinear oscillators, Nonlinear Dyn. 70 (1) (2012) 155 − 169.
[6] Z. Dadi and F. Ravanbakhsh, Global Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays, J. Control Optim. Appl. Math. 2 (2) (2017) 45 − 60.
[7] L. Deng, Z. Wu and Q. Wu, Pinning synchronization of complex network with non-derivative and derivative coupling, Nonlinear Dyn. 73 (1) (2013) 775 − 782.
[8] Y. Ding, W. Jiang and P. Yu, Double Hopf bifurcation in delayed van der PolDuffing equation, Int. J. Bifurc. Chaos Appl. Sci. Eng. 23 (1) (2013) 1350014.
[9] Y. Ding, W. Jiang and P. Yu, Hopf-zero bifurcation in a generalized Gopalsamy neural network model, Nonlinear Dyn. 70 (2) (2012) 1037 − 1050.
[10] Y. Du, R. Xu and Q. Liu, Stability and bifurcation analysis for a discrete-time bidirectional ring neural network model with delay, Electron. J. Differ. Equ. 198 (2013) 1 − 12.
[11] M. Golubitsky and I. Stewart, Homeostasis, singularities, and networks, J. Math. Biol. 74 (1-2) (2017) 387 − 407.
[12] S. Guo, Y. Chen and J. Wu, Two-parameter bifurcations in a network of two neurons with multiple delays, J. Differ. Equ. 244 (2) (2008) 444 − 486.
[13] D. Heide, M. Schäfer and M. Greiner, Robustness of networks against fluctuation-induced cascading failures, Phys. Rev. E 77 (5) (2008) 056103.
[14] C. Hu, J. Yu, H. J. Jiang and Z. D. Teng, Pinning synchronization of weighted complex networks with variable delays and adaptive coupling weights, Non-linear Dyn. 67 (2) (2012) 1373 − 1385.
[15] E. Javidmanesh, Z. Dadi, Z. Afsharnezhad and S. Effati, Global stability analysis and existence of periodic solutions in an eight-neuron BAM neural network model with delays, J. Intell. Fuzzy Syst. 27 (1) (2014) 391 − 406.
[16] S. M. Lee, O. M. Kwon and J. H. Park, A novel delay-dependent criterion for delayed neural networks of neutral type, Phys. Lett. A 374 (17) (2010) 1843 − 1848.
[17] X. Li and J. Cao, Delay-dependent stability of neural networks of neutral type with time delay in the leakage term, Nonlinearity 23 (7) (2010) 1709−1726.
[18] X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay, Nonlinear Dyn. 49 (1) (2007) 319 − 345.
[19] A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley and Sons, New York, 2011.
[20] A. H. Nayfeh, Order reduction of retarded nonlinear systems-the method of multiple scales versus center manifold reduction, Nonlinear Dyn. 51 (4) (2008) 483 − 500.
[21] B. Rahman, Y. N. Kyrychko, K. B. Blyuss and S. J. Hogan, Dynamics of a subthalamic nucleus-globus pallidus network with three-time delays, IFAC-PapersOnLine 51 (14) (2018) 294 − 299.
[22] B. Rahman, K. B. Blyuss and Y. N. Kyrychko, Aging transition in system of oscillators with global distributed-delay coupling, Phys. Rev. E 96 (2017) 032203.
[23] B. Rahman, Y. N. Kyrychko and K. B. Blyuss, Dynamics of unidirectionally-coupled ring neural network with discrete and distributed delays, J. Math. Biol. 80 (6) (2020) 1617 − 1653.
[24] B. Rahman, Dynamics of Neural Systems with Time Delays, Ph.D. Thesis, University of Sussex, 2017.
[25] X. Shi, L. Han, Z. Wang and K. Tang, Pinning synchronization of unilateral coupling neuron network with stochastic noise, Appl. Math. Comput. 232 (2014) 1242 − 1248.
[26] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 2003.
[27] X. P. Yan, Bifurcation analysis in a simplified tri-neuron BAM network model with multiple delays, Nonlinear Anal. Real World Appl. 9 (3) (2008) 963 − 976.
[28] P. Yu, Symbolic computation of normal forms for resonant double Hopf bifurcations using a perturbation technique, J. Sound Vib. 247 (4) (2001) 615 − 632.
[29] J. Zhou, S. Li and Z. Yang, Global exponential stability of Hopfield neural networks with distributed delays, Appl. Math. Model. 33 (3) (2009) 1513 −1520.