[1] A. Alturk, Boundary Functions for Wavelets and Their Properties, Doctoral dissertation, Iowa State University, 2009.
[2] G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transforms and numerical algorithms, Appl. Math. 44 (1991) 141 − 183.
[3] B. N. Datta, Numerical Linear Algebra and Applications, 2nd ed., SIAM, Philadelphia, 2010.
[4] I. Daubechies, Orthonormal basis of compactly supported wavelets, Commun. Pure Appl. Math. 41 (1998) 909 − 998.
[5] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[6] V. Finek, Daubechies wavelet on intervals with application to B.V.Ps, J. Appl. Math. 49 (2004) 465 − 481.
[7] B. R. Johnson, J. P. Modisette, P. J. Nordlander and J. L. Kinsey, Quadrature integration for orthogonal wavelet systems, J. Chem. Phys. 110 (1999) 8309−8317.
[8] D. Malone, Fourier Analysis, Multiresolution Analysis and Dilation Equations, Master’s thesis, Trinity College, Dublin, 1997.
[9] J. Saberi-Nadjafi, M. Mehrabinezhad and H. Akbari, Solving Voltera integral equations of the second kind by wavelet-Galerkin scheme, Comput. Math. Appl. 63 (2012) 1536 − 1547.
[10] W. C. Shann and C. C. Yen, Matrices and quadrature rules for wavelets, Taivanese J. Math. 2 (1998) 435 − 446.
[11] G. Strang, Wavelets and dilation equations, J. SIAM Review 31 (1989) 614−627.
[12] W. Sweldens and R. Piessens, Quadrature formula and asymptotic error expansions for wavelet approximation of smooth functions, SIAM J. Numer. Anal. 31 (1994) 1240 − 1264.
[13] J. Williams and K. Amaratunga, Introduction to Wavelets in Engineering, Massachusetts Institute of Technology, USA, 1994.