On Quasi-Ordering Hypergroups, Ordered Hyperstructures and Their Applications in Genetics

Document Type : Original Scientific Paper

Authors

1 Department of Mathematics, Lebanese International University, Lebanon

2 Department of Mathematics, Yazd University, Yazd, Iran

Abstract

The study of hypercompositional structures (introduced by Marty) is now considered of a great value because of its applications in various sciences. In this paper, we focus on a special hypercompositional structure; quasi-ordering hypergroup. In this regard, we discuss some of the quasi-ordering hypergroup’s properties and investigate some relations on it. Then, we present an application of quasi-ordering hypercompositional structures in genetics and define ordered hypercompositional structures for both sets: phenotypes and genotypes of F2-offspring.

Keywords


[1] M. Al- Tahan and B. Davvaz, On a special single-power cyclic hypergroup and its automorphisms, Discrete Math. Algorithms Appl. 8 (4) (2016) 1650059, 12 pp.
[2] M. Al- Tahan and B. Davvaz, On some properties of single-power cyclic hypergroups and regular relations, J. Algebra Appl. 16 (11) (2017) 14 pp.
[3] M. Al- Tahan and B. Davvaz, Commutative single-power cyclic hypergroups of order three and period two, Discrete Math. Algorithms Appl.  19 (5) (2017)1750070, 15 pp.
[4] M. Al- Tahan and B. Davvaz, Algebraic hyperstructures associated to biological inheritance, Math. Biosci. 285 (2017) 112 − 118.
[5] M. Al- Tahan and B. Davvaz, N-ary hyperstructures associated to the genotypes of F2 -offspring, Int. J. Biomath. 10 (8) (2017) 1750118, 17 pages.
[6] M. Bakhshi and R. A. Borzooei, Ordered polygroups, Ratio Math. 24 (2013) 31 − 40.
[7] J. Chvalina, Commutative hypergroups in the sense of Marty and ordered sets, Gen. Alg. and Ordered Sets, Proc. Inter. Conf., Olomouc (1994) 19 − 30.
[8] J. Chvalina and J. Moucka, Hypergroups determined by ordering with regular endomorphism monoids, Ital. J. Pure Appl. Math. 16 (2004) 227 − 242.
[9] P. Corsini, Prolegomena of Hypergroup Theory, 2nd ed., Aviani Editore, Tricesimo, Italy, 1993.
[10] P. Corsini and V. Leoreanu, Applications of hyperstructures theory, Advances in Mathematics, Kluwer Academic Publisher, Dordrecht, 2003.
[11] B. Davvaz, A. D. Nezhad and M. Heidari, Inheritance examples of algebraic hyperstructures, Inform. Sci. 224 (2013) 180 − 187.
[12] B. Davvaz, Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, USA, 2013.
[13] B. Davvaz and T. Vougiouklis, A Walk Through Weak Hyperstructures Hv-Structures, World Scientific: Hackensack, NJ, USA, 2018.
[14] M. De Salvo and D. Freni, Cyclic semihypergroups and hypergroups, (Italian) Atti Sem. Mat. Fis. Univ. Modena 30 (1) (1981) 44 − 59.
[15] D. Freni, A note on the core of a hypergroup and the transitive closure β of β, Riv. Mat. Pura Appl. 8 (1991) 153 − 156.
[16] D. Heidari and B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73 (2) (2011) 85 − 96.
[17] D. A. Hort, A construction of hypergroups from ordered structures and their morphisms, J. Discrete Math. Sci. Cryptogr. 6 (2003) 139 − 150.
[18] Š. Hošková, Representation of quasi-order hypergroups, Glob. J. Pure Appl. Math. 1 (2005) 173 − 176.
[19] M. Koskas, Groupoides, demi-hypergroupes et hypergroupes (French), J. Math. Pure Appl. 9 (49) (1970) 155 − 192.
[20] V. Leoreanu, About the simplifiable cyclic semihypergroups, Ital. J. Pure Appl. Math. 7 (2000) 69 − 76.
[21] V. Leoreanu, Commutative hypergroups associated with arbitrary hypergroups, J. Discrete Math. Sci. Cryptogr. 6 (2-3) (2003) 195 − 198.
[22] F. Marty, Sur une generalization de la notion de group, in: 8th Congress Math. Scandenaves, Stockholm, Sweden (1934) 45 − 49.
[23] C. Massouros and G. Massouros, Transposition hypergroups with idempotent identity, Int. J. Alg. Hyperstructures  Appl. 1 (2014) 15 − 27.
[24] G. Mendel, Versuche über Pflanzen-Hybriden, Verh. Naturforsch. Ver. Brünn 4 (1866) 3 − 47 (in English in: J. R. Hortic. Soc. 26 (1901) 1 − 32.
[25] M. Novak, On EL-semihypergroups, Eur. J. Combin. 44 (2015) 274 − 286.
[26] M. Novak, Some basic properties of EL-hyperstructures, Eur. J. Combin. 34 (2013) 446 − 459.
[27] S. Omidi and B. Davvaz, Foundations of ordered (semi)hyperrings, J. Indones. Math. Soc. 22 (2) (2016) 131 − 150.
[28] I. G. Rosenberg, Hypergroups and join spaces determined by relations, Ital. J. Pure Appl. Math. 4 (1998) 93 − 101.
[29] T. Vougiouklis, Hyperstructures and Their Representations, Aviani editor. Hadronic Press, Palm Harbor, USA, 1994.
[30] T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Univ. Carolin. Math. Phys. 22 (1) (1981) 3 − 6.