[1] M. Ahookhosh and K. Amini, An efficient nonmonotone trust-region method for unconstrained optimization, Numer. Algor. 59 (2011) 523 − 540.
[2] N. Andrei, Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization, Eur. J. Oper. Res. 204 (2010) 410 − 420.
[3] F. Arzani and M. R. Peyghami, A new nonmonotone fillter Barzilai-Borwein method for solving unconstrained optimization problems, Int. J. Comput. Math. (2014).
[4] D. Ataee Tarzanagh, Z. Saeedian, M. R. Peyghami and H. Mesgarani, A new trust region method for solving least-squares transformation of system of equalities and inequalities, Math. Program. Stud. 9 (2015) 283 − 310.
[5] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988) 141 − 148.
[6] R. M. Chamberlain, M. J. D. Powell, C. Lemarechal and H. C. Pedersen, The watchdog technique for forcing convergence in algorithm for constrained optimization, Math. Program. Stud. 16 (1982) 1 − 17.
[7] A. Conn, N. Gould and Ph. L.Toint, Trust Region Methods, MPSSIAM Series on Optimization, SIAM, Philadelphia, 2000.
[8] E. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002) 201 − 213.
[9] J. Y. Fan and Y. X. Yuan, A new trust region algorithm with trust region radius converging to zero, Proc. 5th Inter. Conf. Optim. Tech. Appl., Hong Kong, 15-17 December 2001, 786 − 794.
[10] M. Fatemi and N. Mahdavi-Amiri, A filter trust-region algorithm for unconstrained optimization with strong global convergence properties, Comput. Optim. Appl. 52 (2012) 239 − 266.
[11] M. Fatemi and N. Mahdavi-Amiri, A non-monotone trust region algorithm for unconstrained optimization with dynamic reference iteration updates using filter, Optimization 61 (6) (2012) 733 − 763.
[12] R. Fletcher and S. Leyer, Nonlinear programming without a penalty function, Math. Program. Ser. A 91 (2002) 239 − 269.
[13] N. I. M. Gould, D. Orban, A. Sartenaer and PhL. Toint, Sensitivity of trust region algorithms to their parameters, Q. J. Oper. Res. 3 (2005) 227 − 241.
[14] N. I. M. Gould, D. Orban and P. L. Toint, Cuter and sifdec: a constrained and unconstrained testing environment, revisited, ACM Trans. Math. Softw. 29 (4) (2002) 373 − 394.
[15] L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton’s method, SIAM J. Numer. Anal. 23 (1986) 707 − 716.
[16] L. Grippo and M. Sciandrone, Nonmontone globalization techniques for the Barzilai-Borwein gradient method, Comput. Optim. Appl. 23 (2002) 143−169.
[17] A. Kamandi, K. Amini and M. Ahookhosh, An improved adaptive trust-region algorithm, Optim. Lett. 11 (3) (2017) 555 − 569.
[18] A. Kamandi and K. Amini, A new nonmonotone adaptive trust region algorithm, Appl. Math. 67 (2021) 233-250.
[19] L. Grippo, F. Lampariello and S. Lucidi, A truncated Newton method with nonmonotone line search for unconstrained optimization, J. Optim. Theory Appl. 60 (3) (1989) 401 − 419.
[20] D. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math. 129 (2001) 1535.
[21] J. J. Moré, B. S. Garbow and K. E. Hilstron, Testing unconstrained optimization software, ACM Trans. Math. Softw. 7 (1981) 17 − 41.
[22] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Series in Operations Research and Financial Engineering, Springer, NewYork, 2007.
[23] J. Nocedal and Y. Yuan, Combining trust region and line search techniques, In: Y. Yuan (ed.), Advanced in Nonlinear Programming, Kluwer Academic, Dordrecht, (1996) 153 − 175.
[24] Z. Saeidian and F. Arzani (in Persian), Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique, J. Oper. Res. Appl. 17 (1) (2020) 85 − 101.
[25] Z. Saeidian and M. R. Peyghami, An adaptive nonmonotone trust region method for unconstrained optimization problems based on a simple subproblem, Iran. J. Numer. Anal. Optim. 5 (2) (2015) 95 − 117.
[26] Z. Sang and Q. Sun, A self-adaptive trust region method with line search based on a simple subproblem model, J. Appl. Math. Comput. 232 (2) (2009) 514 − 522.
[27] A. Sartenaer, Automatic determination of an initial trust region in nonlinear programming, SIAM J. Sci. Comput. 18 (6) (1997) 1788 − 1803.
[28] Z. Shi and J. Guo, A new trust region method for unconstrained optimization, J. Comput. Appl. Math. 213 (2008) 509 − 520.
[29] Z. J. Shi and H. Q. Wang, A new self-adaptive trust region method for unconstrained optimization, Technical Report, College of Operations Research and Management, Qufu Normal University, 2004.
[30] Y. Xue, H. Liu and Z. Liu, An improved nonmonotone adaptive trust region method, Appl. Math. 64 (3) (2019) 335 − 350.
[31] H. C. Zhang and W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim. 14 (2004) 1043 − 1056.
[32] X. S. Zhang, J. L. Zhang and L. Z. Liao, An adaptive trust region method and its convergence, Sci. China. 45 (2002) 620 − 631.