[1] T. Abdeljawad, R. P. Agarwal, E. Karapnar and P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric
space, Symmetry 11 (5) (2019) 686.
[2] M. A. Abdou, M. M. El-Borai and M. M. El-Kojok, Toeplitz matrix method and nonlinear integral equation of Hammerstein type, J. Comput. Appl. Math. 223 (2) (2009) 765 - 776.
[3] R. P. Agarwal, M. Jleli and B. Samet, An investigation of an integral equation involving convexconcave nonlinearities, Mathematics 9 (19) (2021) 2372.
[4] A. Alipanah and S. Esmaeili, Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function, J. Comput. Appl. Math. 235 (18) (2011) 5342 - 5347.
[5] P. Assari and M. Dehghan, The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions, Appl. Numer. Math. 131 (2018) 140 - 157.
[6] I. Aziz, Siraj-ul-Islam and W. Khan, Quadrature rules for numerical integration based on Haar wavelets and hybrid functions, Comput. Math. Appl. 61 (2011) 2770 - 2781.
[7] E. Babolian, S. Bazm and P. Lima, Numerical solution of nonlinear twodimensional integral equations using rationalized Haar functions, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1164 - 1175.
[8] E. Babolian and F. Fattahzdeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Appl. Math. Comput. 188 (2007) 417 - 426.
[9] E. Babolian and A. Shahsavaran, Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets, J. Comput. Appl. Math. 225 (2009) 87 - 95.
[10] M. I. Berenguer, D. Gámez, A. I. Garralda-Guillem and M. C. Serrano Pérez, Nonlinear volterra integral equation of the second kind and biorthogonal systems, Abstr. Appl. Anal. 2010 (2010) 135216.
[11] J. Biazar and H. Ebrahimi, Chebyshev wavelets approach for nonlinear systems of Volterra integral equations, Comput. Math. Appl. 63 (3) (2012) 608 - 616.
[12] C. Canuto, M. Yousuff Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.
[13] C. F. Chen and C. H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Control Theory Appl. 144 (1997) 87 - 94.
[14] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61, SIAM, Philadelphia, 1992.
[15] M. Dehghan and M. Lakestani, Numerical solution of nonlinear system of second-order boundary value problems using cubic B-spline scaling functions, Int. J. Comput. Math. 85 (9) (2008) 1455 - 1461.
[16] L. A. Diaz, M. T. Martin and V. Vampa, Daubechies wavelet beam and plate finite elements, Finite Elem. Anal. Des. 45 (2009) 200 - 209.
[17] G. N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear VolterraHammerstein integral equations. J. Comput. Appl. Math. 76 (1996) 147 - 158.
[18] J. Gao, Y.-L. Jiang, Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel, J. Comput. Appl. Math. 215 (1) (2008) 242 - 259.
[19] B. Hazarika, M. Rabbani, R. P. Agarwal, A. Das and R. Arab, Existence of Solution for Infinite System of Nonlinear Singular Integral Equations and Semi-Analytic Method to Solve it, Iran. J. Sci. Technol. Trans. Sci. 45 (2021) 235 - 245.
[20] M. H. Heydari, Chebyshev cardinal wavelets for nonlinear variable-order fractional quadratic integral equations, Appl. Numer. Math. 144 (2019) 190-203.
[21] M. H. Heydari, Z. Avazzadeh and M. R. Mahmoudi, Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variableorder fractional Brownian motion, Chaos Solit. Fractals 124 (2019) 105 - 124.
[22] M. H. Heydari, M. R. Mahmoudi, A. Shakiba and Z. Avazzadeh, Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion, Commun. Nonlinear Sci. Numer. Simul. 64 (2018) 98 - 121.
[23] M. H. Heydari and M. Razzaghi, Extended Chebyshev cardinal wavelets for nonlinear fractional delay optimal control problems, Int. J. Syst. Sci. 53 (5) (2022) 190 - 203.
[24] M. H. Heydari, R. Tavakoli and M. Razzaghi, Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative, Int. J. Syst. Sci. (2022).
[25] J. K. Hunter and B. Nachtergaele, Applied Analysis, World Scientific, Singapore, 2001.
[26] H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani and C. M. Khalique, Application of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl. 62 (3) (2011) 1038 - 1045.
[27] G. -W. Jang, Y. Y. Kim and K. K. Choi, Remesh-free shape optimization using the wavelet-Galerkin method, Internat. J. Solids Struct. 41 (2004) 6465-6483.
[28] J. -P. Kauthen, A survey of singularly perturbed Volterra equations, Appl. Numer. Math. 24 (1997) 95 - 114.
[29] Ü. Lepik, Application of the Haar wavelet transform to solving integral and differential equations, Proc. Estonian Acad. Sci. Phys. Math. 56 (1) (2007) 28 - 46.
[30] Y. Liu, Y. Liu and Z. Cen, Daubechies wavelet meshless method for 2-D elastic problems, Tsinghua Sci. Technol. 13 (5) (2008) 605 - 608.
[31] K. Maleknejad, H. Almasieh and M. Roodaki, Triangular functions (TF) method for the solution of nonlinear VolterraFredholm integral equations, Commun. Nonlinear Sci. Numer. Simul. 15 (11) (2010) 3293 - 3298.
[32] K. Maleknejad, T. Lotfi and Y. Rostami, Numerical computational method in solving Fredholm integral equations of the second kind by using Coifman wavelet, Appl. Math. Comput. 186 (1) (2007) 212 - 218.
[33] K. Maleknejad and E. Najafi, Numerical solution of nonlinear Volterra integral equations with nonincreasing kernel and an application, Bull. Malays. Math. Sci. Soc. (2) 36 (1) (2013) 83 - 96.
[34] K. Maleknejad and M. Tavassoli Kajani, Solving integro-differential equation by using Hybrid Legendre and block-pulse functions, Int. J. Appl. Math. 11 (1) (2002) 67 - 76.
[35] M. Mehra and N. K.-R. Kevlahan, An adaptive wavelet collocation method for the solution of partial differential equations on the sphere, J. Comput. Phys. 227 (2008) 5610 - 5632.
[36] F. Mirzaee and A. A. Hoseini, Numerical solution of nonlinear VolterraFredholm integral equations using hybrid of block-pulse functions and Taylor series, Alexandria Eng. J. 52 (3) (2013) 551 - 555.
[37] F. Mohammadi and A. Ciancio, Wavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel, Wavelets and Linear Algebra 4 (1) (2017) 53 - 73.
[38] N. Negarchi and K. Nouri, Numerical solution of Volterra-Fredholm integral equations using the collocation method based on a special form of the MüntzLegendre polynomials, J. Comput. Appl. Math. 344 (C) (2018) 15 - 24.
[39] K. Nouri and N. B. Siavashani, Application of Shannon wavelet for solving boundary value problems of fractional differential equations, Wavelets and Linear Algebra 1 (1) (2014) 33 - 42.
[40] S. K. Panda, A. Tassaddiq and R. P. Agarwal, A new approach to the solution of nonlinear integral equations via various FBe-contractions, Symmetry 11 (2) (2019) 206 - 226.
[41] H. Saeedi, M. Mohseni Moghadam, N. Mollahasani and G. N. Chuev, A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul. 16 (3) (2011) 1154 - 1163.
[42] B. Salehi, K. Nouri and L. Torkzadeh, An approximate method for solving optimal control problems with Chebyshev cardinal wavelets, Iranian J. Oper. Res. 12 (2021) 20 - 33.
[43] S. U. Islam, I. Aziz and F. Haq, A comparative study of numerical integration based on Haar wavelets and hybrid functions, Comput. Math. Appl. 59 (6) (2010) 2026 - 2036.
[44] S. U. Islam, B. Šarler, I. Aziz and F. Haq, Haar wavelet collocation method for the numercal solution of boundary layer fluid flow problems, Int. J. Therm. Sci. 50 (2011) 686 - 697.
[45] X. Shang and D. Han, Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multi-wavelets, Appl. Math. Comput. 191 (2) (2007) 440 - 444.
[46] C. -T. Sheng, Z. -Q. Wang and B. -Y. Guo, A multistep legendre-gauss spectral collocation method for nonlinear volterra integral equations, SIAM J. Numer. Anal. 52 (4) (2014) 1953 - 1980.
[47] J. L. Wu, A wavelet operational method for solving fractional partial differential equations numerically, Appl. Math. Comput. 214 (1) (2009) 31 - 40.
[48] S. Yousefi and A. Banifatemi, Numerical solution of Fredholm integral equations by using CAS wavelets, Appl. Math. Comput. 183 (1) (2006) 458 - 463.
[49] S. Yousefi and M. Razzaghi, Legendre wavelets method for the nonlinear VolterraFredholm integral equations, Math. Comput. Simul. 70 (1) (2005) 1-8.
[50] X. Zhu, G. Lei and G. Pan, On application of fast and adaptive BattleLemarie wavelets to modelling of multiple lossy transmission lines, J. Comput. Phys. 132 (1997) 299 - 311.