Chebyshev Cardinal Wavelets for Nonlinear Volterra Integral Equations of the Second Kind

Document Type : Original Scientific Paper

Authors

Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, P. O. Box 35195-363, Semnan, Iran

Abstract

This study concentrated on the numerical solution of a nonlinear Volterra integral equation. The approach is accorded to a type of orthogonal wavelets named the Chebyshev cardinal wavelets. The undetermined solution is extended concerning the Chebyshev cardinal wavelets involving unknown coefficients. Hence, a system of nonlinear algebraic equations is drawn out by changing the introduced expansion to the predetermined problem, applying the generated operational matrix, and supposing the cardinality of the basis functions. Conclusively, the estimated solution is achieved by figuring out the mentioned system. Relatively, the convergence of the founded procedure process is reviewed in the Sobolev space. In addition, the results achieved from utilizing the method in some instances display the applicability and validity of the method.

Keywords


[1] T. Abdeljawad, R. P. Agarwal, E. Karapnar and P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric
space,
Symmetry 11 (5) (2019) 686.
[2] M. A. Abdou, M. M. El-Borai and M. M. El-Kojok, Toeplitz matrix method and nonlinear integral equation of Hammerstein type, J. Comput. Appl. Math. 223 (2) (2009) 765 - 776.
[3] R. P. Agarwal, M. Jleli and B. Samet, An investigation of an integral equation involving convexconcave nonlinearities,
Mathematics 9 (19) (2021) 2372.
 [4] A. Alipanah and S. Esmaeili, Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function, J. Comput. Appl. Math. 235 (18) (2011) 5342 - 5347.
[5] P. Assari and M. Dehghan, The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions,
Appl. Numer. Math. 131 (2018) 140 - 157.
[6] I. Aziz, Siraj-ul-Islam and W. Khan, Quadrature rules for numerical integration based on Haar wavelets and hybrid functions,
Comput. Math. Appl. 61 (2011) 2770 - 2781.
[7] E. Babolian, S. Bazm and P. Lima, Numerical solution of nonlinear twodimensional integral equations using rationalized Haar functions,
Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1164 - 1175.
[8] E. Babolian and F. Fattahzdeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration,
Appl. Math. Comput. 188 (2007) 417 - 426.
[9] E. Babolian and A. Shahsavaran, Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets,
J. Comput. Appl. Math. 225 (2009) 87 - 95.
[10] M. I. Berenguer, D. Gámez, A. I. Garralda-Guillem and M. C. Serrano Pérez, Nonlinear volterra integral equation of the second kind and biorthogonal systems,
Abstr. Appl. Anal. 2010 (2010) 135216.
[11] J. Biazar and H. Ebrahimi, Chebyshev wavelets approach for nonlinear systems of Volterra integral equations,
Comput. Math. Appl. 63 (3) (2012) 608 - 616.
[12] C. Canuto, M. Yousuff Hussaini, A. Quarteroni and T. A. Zang,
Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.
[13] C. F. Chen and C. H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems,
IEE Proc. Control Theory Appl. 144 (1997) 87 - 94.
[14] I. Daubechies,
Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61, SIAM, Philadelphia, 1992.
[15] M. Dehghan and M. Lakestani, Numerical solution of nonlinear system of second-order boundary value problems using cubic B-spline scaling functions,
Int. J. Comput. Math. 85 (9) (2008) 1455 - 1461.
[16] L. A. Diaz, M. T. Martin and V. Vampa, Daubechies wavelet beam and plate finite elements,
Finite Elem. Anal. Des. 45 (2009) 200 - 209.
[17] G. N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear VolterraHammerstein integral equations. J. Comput. Appl. Math. 76 (1996) 147 - 158.
[18] J. Gao, Y.-L. Jiang, Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel,
J. Comput. Appl. Math. 215 (1) (2008) 242 - 259.
[19] B. Hazarika, M. Rabbani, R. P. Agarwal, A. Das and R. Arab, Existence of Solution for Infinite System of Nonlinear Singular Integral Equations and Semi-Analytic Method to Solve it,
Iran. J. Sci. Technol. Trans. Sci. 45 (2021) 235 - 245.
[20] M. H. Heydari, Chebyshev cardinal wavelets for nonlinear variable-order fractional quadratic integral equations,
Appl. Numer. Math. 144 (2019) 190-203.
[21] M. H. Heydari, Z. Avazzadeh and M. R. Mahmoudi, Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variableorder fractional Brownian motion,
Chaos Solit. Fractals 124 (2019) 105 - 124.
[22] M. H. Heydari, M. R. Mahmoudi, A. Shakiba and Z. Avazzadeh, Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion,
Commun. Nonlinear Sci. Numer. Simul. 64 (2018) 98 - 121.
[23] M. H. Heydari and M. Razzaghi, Extended Chebyshev cardinal wavelets for nonlinear fractional delay optimal control problems,
Int. J. Syst. Sci. 53 (5) (2022) 190 - 203.
[24] M. H. Heydari, R. Tavakoli and M. Razzaghi, Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative,
Int. J. Syst. Sci. (2022).
[25] J. K. Hunter and B. Nachtergaele,
Applied Analysis, World Scientific, Singapore, 2001.
[26] H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani and C. M. Khalique, Application of Legendre wavelets for solving fractional differential equations,
Comput. Math. Appl. 62 (3) (2011) 1038 - 1045.
[27] G. -W. Jang, Y. Y. Kim and K. K. Choi, Remesh-free shape optimization using the wavelet-Galerkin method,
Internat. J. Solids Struct. 41 (2004) 6465-6483.
[28] J. -P. Kauthen, A survey of singularly perturbed Volterra equations,
Appl. Numer. Math. 24 (1997) 95 - 114.
[29] Ü. Lepik, Application of the Haar wavelet transform to solving integral and differential equations, Proc. Estonian Acad. Sci. Phys. Math. 56 (1) (2007) 28 - 46.
[30] Y. Liu, Y. Liu and Z. Cen, Daubechies wavelet meshless method for 2-D elastic problems,
Tsinghua Sci. Technol. 13 (5) (2008) 605 - 608.
[31] K. Maleknejad, H. Almasieh and M. Roodaki, Triangular functions (TF) method for the solution of nonlinear VolterraFredholm integral equations,
Commun. Nonlinear Sci. Numer. Simul. 15 (11) (2010) 3293 - 3298.
[32] K. Maleknejad, T. Lotfi and Y. Rostami, Numerical computational method in solving Fredholm integral equations of the second kind by using Coifman wavelet,
Appl. Math. Comput. 186 (1) (2007) 212 - 218.
[33] K. Maleknejad and E. Najafi, Numerical solution of nonlinear Volterra integral equations with nonincreasing kernel and an application,
Bull. Malays. Math. Sci. Soc. (2) 36 (1) (2013) 83 - 96.
[34] K. Maleknejad and M. Tavassoli Kajani, Solving integro-differential equation by using Hybrid Legendre and block-pulse functions,
Int. J. Appl. Math. 11 (1) (2002) 67 - 76.
[35] M. Mehra and N. K.-R. Kevlahan, An adaptive wavelet collocation method for the solution of partial differential equations on the sphere,
J. Comput. Phys. 227 (2008) 5610 - 5632.
[36] F. Mirzaee and A. A. Hoseini, Numerical solution of nonlinear VolterraFredholm integral equations using hybrid of block-pulse functions and Taylor series,
Alexandria Eng. J. 52 (3) (2013) 551 - 555.
[37] F. Mohammadi and A. Ciancio, Wavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel,
Wavelets and Linear Algebra 4 (1) (2017) 53 - 73.
[38] N. Negarchi and K. Nouri, Numerical solution of Volterra-Fredholm integral equations using the collocation method based on a special form of the MüntzLegendre polynomials,
J. Comput. Appl. Math. 344 (C) (2018) 15 - 24.
[39] K. Nouri and N. B. Siavashani, Application of Shannon wavelet for solving boundary value problems of fractional differential equations,
Wavelets and Linear Algebra 1 (1) (2014) 33 - 42.
[40] S. K. Panda, A. Tassaddiq and R. P. Agarwal, A new approach to the solution of nonlinear integral equations via various
FBe-contractions, Symmetry 11 (2) (2019) 206 - 226.
 [41] H. Saeedi, M. Mohseni Moghadam, N. Mollahasani and G. N. Chuev, A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul. 16 (3) (2011) 1154 - 1163.
[42] B. Salehi, K. Nouri and L. Torkzadeh, An approximate method for solving optimal control problems with Chebyshev cardinal wavelets,
Iranian J. Oper. Res. 12 (2021) 20 - 33.
[43] S. U. Islam, I. Aziz and F. Haq, A comparative study of numerical integration based on Haar wavelets and hybrid functions,
Comput. Math. Appl. 59 (6) (2010) 2026 - 2036.
[44] S. U. Islam, B. Šarler, I. Aziz and F. Haq, Haar wavelet collocation method for the numercal solution of boundary layer fluid flow problems,
Int. J. Therm. Sci. 50 (2011) 686 - 697.
[45] X. Shang and D. Han, Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multi-wavelets,
Appl. Math. Comput. 191 (2) (2007) 440 - 444.
[46] C. -T. Sheng, Z. -Q. Wang and B. -Y. Guo, A multistep legendre-gauss spectral collocation method for nonlinear volterra integral equations,
SIAM J. Numer. Anal. 52 (4) (2014) 1953 - 1980.
[47] J. L. Wu, A wavelet operational method for solving fractional partial differential equations numerically,
Appl. Math. Comput. 214 (1) (2009) 31 - 40.
[48] S. Yousefi and A. Banifatemi, Numerical solution of Fredholm integral equations by using CAS wavelets,
Appl. Math. Comput. 183 (1) (2006) 458 - 463.
[49] S. Yousefi and M. Razzaghi, Legendre wavelets method for the nonlinear VolterraFredholm integral equations,
Math. Comput. Simul. 70 (1) (2005) 1-8.
[50] X. Zhu, G. Lei and G. Pan, On application of fast and adaptive BattleLemarie wavelets to modelling of multiple lossy transmission lines,
J. Comput. Phys. 132 (1997) 299 - 311.