[1] V. Sharma, R. Goswami and A. K. Madan, Eccentric Connectivity Index: a
novel highly discriminating topological descriptor for structure-property and
structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273-282.
[2] S. Gupta, M. Singh and A. K. Madan, Connective Eccentricity Index: a Novel
Topological Descriptor for Predicting Biological Activity, J. Mol. Graph.
Model. 18 (2000) 18-25,
https://doi.org/10.1016/S1093-3263(00)00027-9.
[3] S. Gupta, M. Singh and A. K. Madan, Predicting Anti-Hiv Activity: Compu-
tational Approach Using a Novel Topological Descriptor, J. Comput. Aided.
Mol. Des. 15 (2001) 671-678, https://doi.org/10.1023/A:1011964003474.
[4] S. Ediz, On The Ediz Eccentric Connectivity Index of a Graph, Optoelectron.
Adv. Mat. 5 (2011) 1263-1264.
[5] S. Gupta, M. Singh and A. K. Madan, Eccentric Distance Sum: a Novel Graph
Invariant for Predicting Biological and Physical Properties, J. Math. Anal.
Appl. 275 (2002) 386-401, https://doi.org/10.1016/S0022-247X(02)00373-6.
[6] S. Bajaj, S. S. Sambi and A. K. Madan, Topological Models For Prediction
of Anti-Hiv Activity of Acylthiocarbamates, Bioorg. Med. Chem. 13 (2005)
3263-3268, https://doi.org/10.1016/j.bmc.2005.02.033.
[7] S. Akhter and R. Farooq, The Eccentric Adjacency Index of Unicyclic
Graphs and Trees, Asian-Eur. J. Math. 13 (2020) 2050028, 16 pp,
https://doi.org/10.1142/S179355712050028X.
[8] T. Doslic and M. Saheli, Augmented Eccentric Connectivity Index, Miskolc
Math. Notes 12 (2011) 149-157, https://doi.org/10.18514/MMN.2011.331.
[9] T. Doslic, M. Saheli and D. Vukicevic, Eccentric Connectivity Index:
extremal graphs and values, Iranian J. Math. Chem. 1 (2010) 45-56,
https://doi.org/10.22052/IJMC.2010.5154.
[10] M. Ghorbani, K. Malekjani and A. Khaki, Eccentric Connectivity In-
dex of Some Dendrimer Graphs, Iranian J. Math. Chem. 3 (2012) 7-18,
https://doi.org/ 10.22052/IJMC.2012.5270.
[11] A. Ilic, G. Yu and L. Feng, On the Eccentric Distance Sum of Graphs, J. Math.
Anal. Appl. 381 (2011) 590-600, https://doi.org/10.1016/j.jmaa.2011.02.086.
[12] M. A. Malik, Two Degree-Distance Based Topological Descriptors of
Some Product Graphs, Discrete Appl. Math. 236 (2018) 315-328,
https://doi.org/10.1016/j.dam.2017.11.002.
[13] Y. Nacaroglu, On the Eccentric Adjacency Index of Graphs, New Trends
Math. Sci. 6 (2018) 128-136, https://doi.org/10.20852/ntmsci.2018.301.
[14] Y. Nacaroglu and A. D. Maden, On the Eccentric Connectivity In-
dex of Unicyclic Graphs, Iranian J. Math. Chem. 9 (2018) 47-56,
https://doi.org/10.22052/IJMC.2017.59425.1231.
[15] J. Sedlar, On Augmented Eccentric Connectivity Index of Graphs and Trees,
MATCH Commun. Math. Comput. Chem. 68 (2012) 325-342.
[16] R. Sharafdini and M. Safazadeh, On Eccentric Adjacency Index of Several
In nite Classes of Fullerenes, British J. Math. Comput. Sci. 12 (2016) 1-11,
https://doi.org/10.9734/BJMCS/2016/20567.
[17] Z. Yarahmadi, Eccentric Connectivity and Augmented Eccentric Connectiv-
ity Indices of N-Branched Phenylacetylenes Nanostar Dendrimers, Iranian J.
Math. Chem. 1 (2010) 105-110, https://doi.org/10.22052/IJMC.2010.5160.
[18] Z. Yarahmadi, T. Doslic and S. Moradi, Chain Hexagonal Cacti: Extremal
with Respect to the Eccentric Connectivity Index, Iranian J. Math. Chem. 4
(2013) 123-136, https://doi.org/10.22052/IJMC.2013.5286.
[19] B. Zhou and Z. Du, On Eccentric Connectivity Index, MATCH Commun.
Math. Comput. Chem. 63 (2010) 181-198.
[20] Y. Hou and J. Li, Bounds On The Largest Eigenvalue of Trees with
a Given Size of Matching, Linear Algebra Appl. 342 (2002) 203-217,
https://doi.org/10.1016/S0024-3795(01)00465-7.