[1] J. H. Van Lint, Introduction to Coding Theory, Springer- Verlag, 1999.
[2] V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform.
Theory 37 (1991) 1412 - 1418.
[3] S. T. Dougherty and S. Han, Higher weights and generalized
MDS codes, J. Korean Math. Soc. 47 (2010) 1167 - 1182,
https://doi.org/10.4134/JKMS.2010.47.6.1167.
[4] F. Farhang Baftani and H. R. Maimani, The weight hierarchy of
hadamard codes, Facta Univ. Ser. Math. Inform. 34 (2019) 797 - 803,
https://doi.org/10.22190/FUMI1904797F.
[5] B. Hove, Generalized Lee Weight for Codes over Z=sub4, Proc.
IEEE Int. Symp. Inf. Theory, Ulm, Germany, (1997) p. 203,
https://doi.org/10.1109/ISIT.1997.613118.
[6] S. T. Dougherty, M. K. Gupta and K. Shiromoto, On generalized weights for
codes over Zk, Australas. J. Combin. 31 (2005) 231 - 248.
[7] B. Yildiz and Z. Odemis Ozger, A generalization of the Lee weight to Zpk ,
TWMS J. App. Eng. Math. 2 (2012) 145 - 153:
[8] S. Ling and C. Xing, Coding Theory: A First Course, Cambridge university
press, 2004.