Pseudo o-Minimality for Double Stone Algebras

Document Type : Original Scientific Paper

Authors

1 Faculty of Mathematics, statistics and computer science, University of tabriz, Iran

2 Faculty of Mathematics, statistics and computer science, University of tabriz, Tabriz, Iran

Abstract

Pseudo o-minimality is a generalization of o-minimality of linear orders to partial orders. Recently Lei Chen, Niandong Shi and Guohua Wu provided pseudo o-minimality for the class of Stone algebras. In this note we use quantifier elimination property to show that the class of double Stone algebras is pseudo o-minimal in their expanded language.

Keywords

Main Subjects


[1] L. V. den Dries, Remarks on Tarski’s problem concerning (R,+,*, exp), Stud.
Logic Found. Math. 112 (1984) 97 - 121, https://doi.org/10.1016/S0049-
237X(08)71811-1.
[2] J. F. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures
II, Trans. Amer. Math. Soc. 295 (1986) 593 - 605.
[3] A. Pillay and C. Steinhorn, Definable sets in ordered structures I, Trans.
Amer. Math. Soc. 295 (1986) 565 - 592.
[4] C. Toffalori, Lattice ordered o-minimal structures, Notre Dame J. Formal
Logic 39 (1998) 447 - 463, https://doi.org/10.1305/ndjfl/1039118862.
[5] L. Chen, N. Shi and G. Wu, Definable sets in Stone algebras, Arch. Math.
Logic 55 (2016) 749 - 757, https://doi.org/10.1007/s00153-016-0491-x.
[6] P. H. Schmitt, The model-completion of Stone algebras, Ann. Sci. Univ. Clermont
No. 60 Math. 60 (1976) 135 - 155.
[7] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, Lukasiewicz-Moisil
Algebras, North-Holland, (1991).
[8] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press,
Columbia, (1974).
[9] T. S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag,
(2005).
[10] B. A. Davey, Dualities for Stone algebras, double Stone algebras and relative
Stone algebras, Colloq. Math. 46 (1982) 1 - 14.
[11] D. M. Clark and P. H. Krauss, Topological quasi varieties, Acta Sci. Math.
(Szeged). 47 (1984) 3 - 39.
[12] W. Hodges, Model Theory, Cambridge University Press, (1993).
[13] D. M. Clark, The structure of algebraically and existentially closed Stone and
double Stone algebras, J. Symbolic Logic 54 (1989) 363 - 375.
[14] V. Koubek and J. Sichler, Amalgamation in varieties of distributive
double p-algebras, Algebra Universalis 32 (1994) 407 - 438,
https://doi.org/10.1007/BF01195722.
Volume 8, Issue 1
Special Issue: Proceedings of the 27th Iranian Algebra Seminar (IAS27) --- Editors: Reza Sharafdini and Mojtaba Sedaghatjoo
March 2023
Pages 35-45