On w-Neat Rings‎

Document Type : Original Scientific Paper

Author

Department of Mathematics,Velayat University,Iranshahr, Iran

Abstract

‎In this paper‎, ‎we offer a new generalization of the neat ring that is called a w-neat ring‎. ‎A ring $ R $ is said to be weakly clean if every $ r\in R $ can be written as $ r=u+e $ or $ r=u-e $ where $ u\in‎$ U$(R) $ and $ e\in‎$ I‎‏d$‎(R) $‎. ‎We define a w-neat ring to be one for which every proper homomorphic image is weakly clean‎.
‎We obtain some properties of w-neat rings‎.

Keywords

Main Subjects


[1] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math.
Soc. 229 (1977) 269-278, https://doi.org/10.1090/S0002-9947-1977-0439876-
2.
[2] W. Wm. McGovern, Neat rings, J. Pure Appl. Algebra 205 (2006) 243-265,
https://doi.org/10.1016/j.jpaa.2005.07.012.
[3] M. S. Ahn and D. D. Anderson, Weakly clean rings and almost
clean rings, Rocky Mountain J. Math. 36 (2006) 783 - 798,
https://doi.org/10.1216/rmjm/1181069429.
[4] A. Y. M. Chin and K. T. Qua, A note on weakly clean rings, Acta Math Hung.
132 (2011) 113 -116, https://doi.org/10.1007/s10474-011-0100-8.
[5] P. V. Danchev, On weakly clean and weakly exchange rings having the
strong property, Publ. Inst. Math. (Beograd) (N.S.) 101 (2017) 135 - 142,
https://doi.org/10.2298/PIM1715135D.
[6] T. Kosan, S. Sahinkaya and Y. Zhou, On weakly clean rings, Comm. Algebra
45 (2017) 3494 - 3502, https://doi.org/10.1080/00927872.2016.1237640.
[7] D. D. Anderson and V. P. Camillo, Commutative rings whose elements are
a sum of a unit and an idempotent, Comm. Algebra 30 (2002) 3327 - 3336,
https://doi.org/10.1081/AGB-120004490.
[8] W. Brandal, Commutative Rings Whose Finitely Generated Modules Decompose,
Lecture Notes in Mathematics, Springer, Berlin, 1979.
[9] L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Mathematical
Surveys and Monographs, American Mathematical Society, Providence, 2001.
[10] G. De Marco and A. Orsatti, Commutative rings in which every prime ideal
is contained in a unique maximal ideal, Proc. Amer. Math. Soc. 30 (1971)
459 - 466, https://doi.org/10.2307/2037716.
[11] I. Kaplansky, Modules over dedekind rings and valuation rings, Trans. Amer.
Math. Soc. 72 (1952) 327 - 340.
Volume 8, Issue 1
Special Issue: Proceedings of the 27th Iranian Algebra Seminar (IAS27) --- Editors: Reza Sharafdini and Mojtaba Sedaghatjoo
March 2023
Pages 65-70