Chaotic Time Series Prediction Using Rough-Neural Networks

Document Type : Original Scientific Paper

Authors

Department of Mathematics, Payame Noor University, Tehran, Iran

Abstract

‎Artificial neural networks with amazing properties‎, ‎such as universal approximation‎, ‎have been utilized to approximate the nonlinear processes in many fields of applied sciences‎. ‎This work proposes the rough-neural networks (R-NNs) for the one-step ahead prediction of chaotic time series‎. ‎We adjust the parameters of R-NNs using a continuous-time Lyapunov-based training algorithm‎, ‎and prove its stability using the continuous form of Lyapunov stability theory‎. ‎Then‎, ‎we utilize the R-NNs to predict the well-known Mackey-Glass time series‎, ‎and Henon map‎, ‎and compare the simulation results with some well-known neural models‎.

Keywords

Main Subjects


[1] D. C. Montgomery, C. L. Jennings and M. Kulahci, Introduction to Time
Series Analysis and Forecasting, John Wiley & Sons, Hoboken, New Jersey,
2015.
[2] M. M. Gupta, L. Jin and N. Homma, Static and Dynamic Neural Networks:
From Fundamentals to Advanced Theory, John Wiley & Sons, Inc. 2003.
[3] R. J. Frank, N. Davey and S. P. Hunt, Time series prediction
and neural networks, J. Intell. Robot. Syst. 31 (2001) 91 − 103,
https://doi.org/10.1023/A:1012074215150.
[4] Y. Chen, B. Yang and J. Dong, Time-series prediction using a local
linear wavelet neural network, Neurocomputing, 69 (2006) 449 − 465,
https://doi.org/10.1016/j.neucom.2005.02.006.
[5] A. Gholipour, B. N. Araabi and C. Lucas, Predicting chaotic time series using
neural and neurofuzzy models: A comparative study, Neural Process Lett. 24
(2006) 217 − 239, https://doi.org/10.1007/s11063-006-9021-x.
[6] D. O. Faruk, A hybrid neural network and ARIMA model for water quality time series prediction, Eng. Appl. Artif. Intell. 23 (2010) 586 − 594,
https://doi.org/10.1016/j.engappai.2009.09.015.
[7] R. Chandra, S. Goyal and R. Gupta, Evaluation of deep learning models for
multi-step ahead time series prediction, IEEE Access 9 (2021) 83105−83123,
https://doi.org/10.1109/ACCESS.2021.3085085.
[8] A. Tealab, Time series forecasting using artificial neural networks methodologies: A systematic review, Future Computing Inform. J. 3 (2) (2018) 334−340,
https://doi.org/10.1016/j.fcij.2018.10.003.
[9] P. Lingras, Rough neural networks, Proceedings of the 6th international conference on information processing and management of uncertainty (IPMU)
Granada, Spain (1996) 1445 − 1450.
[10] D. Yamaguchi, F. Katayama, M. Takahashi, M. Arai and K. J.
Mackin, The medical diagnostic support system using extended rough
neural network and multiagent, Artif Life Robot. 13 (2008) 184 − 187,
https://doi.org/10.1007/s10015-008-0543-3.
[11] R. K. Nowicki, Rough Set–Based Classification Systems, Springer, 2019.
[12] K. Sasirekha and K. Thangavel, Biometric face classification with the hybridised rough neural network, Int. J. Biom. 12 (2) (2020) 193 − 217,
https://doi.org/10.1504/IJBM.2020.107717.
[13] S. M. J. Alehasher and M. Teshnehlab, Implementation of rough neural networks with probabilistic learning for nonlinear system identification, J. Control, 6 (1) (2012) 41 − 50.
[14] G. Ahmadi and M. Teshnehlab, Designing and implementation of stable sinusoidal rough-neural identifier, IEEE Trans. Neural Netw. Learn. Syst. 28
(8) (2017) 1774 − 1786, https://doi.org/10.1109/TNNLS.2016.2551303.
[15] G. Ahmadi, M. Teshnehlab and F. Soltanian, A higher order online Lyapunovbased emotional learning for rough-neural identifiers, Control Optim. Appl.
Math. 3 (1) (2018) 87−108, https://doi.org/10.30473/coam.2019.40779.1083.
[16] G. Ahmadi and M. Teshnehlab, Identification of multiple input-multiple
output non-linear system cement rotary kiln using stochastic gradientbased rough-neural network, J. AI Data Min. 8 (3) (2020) 417 − 425,
https://doi.org/10.22044/jadm.2020.8865.2021.
[17] G. Ahmadi, Stable rough extreme learning machines for the identification of
uncertain continuous-time nonlinear systems, Control Optim. Appl. Math. 4
(1) (2019) 83 − 101, https://doi.org/10.30473/coam.2020.51511.1137.
[18] P. Lingras, Comparison of neofuzzy and rough neural networks, Inf. Sci. 110
(3-4) (1998) 207 − 215, https://doi.org/10.1016/S0020-0255(97)10045-7.
[19] M. Khodayar, O. Kaynak and M. E. Khodayar, Rough deep neural architecture for short-term wind speed forecasting, IEEE Trans. Industr. Inform. 13
(2017) 2770 − 2779, https://doi.org/10.1109/TII.2017.2730846.
[20] H. Jahangir, H. Tayarani, S. Baghali, A. Ahmadian, A. Elkamel, M.
A. Golkar and M. Castilla, A novel electricity price forecasting approach based on dimension reduction strategy and rough artificial neural networks, IEEE Trans. Industr. Inform. 16 (4) (2020) 2369 − 2381,
https://doi.org/10.1109/TII.2019.2933009.
[21] H. Jahangir, H. Tayarani, A. Ahmadian, M. A. Golkar, J. Miret,
M. Tayarani and H. Oliver Gao, Charging demand of plug-in electric vehicles: forecasting travel behavior based on a novel rough artificial neural network approach, J. Clean. Prod. 229 (2019) 1029-1044,
https://doi.org/10.1016/j.jclepro.2019.04.345.
[22] B. Cao, J. Zhao, Z. Lv, Y. Gu, P. Yang and S. K. Halgamuge, Multiobjective evolution of fuzzy rough neural network via distributed parallelism for
stock prediction, IEEE Transactions on Fuzzy Systems, 28 (2020) 939−952,
https://doi.org/10.1109/TFUZZ.2020.2972207.
[23] A. Sheikhoushaghi, N. Yarahmadi Gharaei and A. Nikoofard, Application of rough neural network to forecast oil production rate of an oil
field in a comparative study, J. Pet. Sci. Eng. 209 (2022) p. 109935,
https://doi.org/10.1016/j.petrol.2021.109935.
[24] G. Ahmadi and M. Dehghandar, Mackey-glass time series prediction using
rough-neural networks, Proceedings of the 51th annual iranian mathematics
conference, Kashan, (2021) 1243 − 1248.
[25] Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci. 11 (1982) 341 − 356,
https://doi.org/10.1007/BF01001956.
[26] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, 2004.
[27] A. Basharat and M. Shah, Time series prediction by chaotic modeling of nonlinear dynamical systems, IEEE 12th International Conference on Computer Vision, Kyoto, Japan (2009) 1941 − 1948,
https://doi.org/10.1109/ICCV.2009.5459429.
[28] P. A. Ioannou and J. Sun, Robust adaptive control, Prentice Hall, 1996.
[29] C. H. López-Caraballo, I. Salfate, J. A. Lazzús, P. Rojas, M. Rivera and
L. Palma-Chilla, Mackey-glass noisy chaotic time series prediction by a
swarm-optimized neural network, J. Phys.: Conf. Ser. 720 (2016) p. 012002,
https://doi.org/10.1088/1742-6596/720/1/012002.
[30] J. C. Patra and C. Bornand, Nonlinear dynamic system identification
using Legendre neural network, The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, (2010) 1 − 7,
https://doi.org/10.1109/IJCNN.2010.5596904.
[31] M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977) 287−289, https://doi.org/10.1126/science.267326.
[32] M. Hénon, A two-dimensional mapping with a strange attractor, Commun.
Math. Phys. 50 (1976) 69 − 77, https://doi.org/10.1007/BF01608556.
[33] C. H. Lee, F. Y. Chang and C. M. Lin, An efficient interval type-2 fuzzy
CMAC for chaos time-series prediction and synchronization, IEEE Trans. Cybern. 44 (3) (2013) 329−341, https://doi.org/10.1109/TCYB.2013.2254113.
[34] A. E. Omidvar, Configuring radial basis function network using fractal scaling process with application to chaotic time series prediction, Chaos, Solit. & Fractals, 22 (4) (2004) 757 − 766,
https://doi.org/10.1016/j.chaos.2004.03.008.
[35] T. Kuremoto, M. Obayashi, K. Kobayashi, T. Hirata and S. Mabu,
Forecast chaotic time series data by DBNs, 7th International Congress
on Image and Signal Processing, Dalian, China (2014) 1130 − 1135,
https://doi.org/10.1109/CISP.2014.7003950.