Bounds on the Minimum Edge Dominating Energy in Terms of Some Parameters of a Graph

Document Type : Original Scientific Paper

Author

Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran

Abstract

‎The minimum edge dominating energy‎, ‎denoted by $EE_{F}(G)$‎, ‎is the sum of the absolute values of eigenvalues of the minimum edge dominating matrix of graph $G$‎. ‎In this paper‎, ‎we give some bounds and sharp bounds of $EE_{F}(G)$ in terms of matching number‎, ‎the number of positive eigenvalues of the minimum edge dominating matrix‎, ‎and the rank of $G$‎.

Keywords

Main Subjects


[1] I. Gutman, The energy of a graph, Ber. Math.— Statist. Sekt. Forschungsz. Graz 103 (1978) 1 - 22.
[2] F. Harary, Graph Theory, Addison Wesley, Massachusetts, 1972.
[3] S. Akbari, A. H. Ghodrati, I. Gutman, M. A. Hosseinzadeh and E. V. Konstantinova, On path energy of graphs, MATCH Commun. Math. Comput. Chem. 81 (2) (2019) 465 - 470.
[4] L. E. Allem, G. Molina and A. Pastine, Short note on Randic energy, MATCH Commun. Math. Comput. Chem. 82 (2019) 515 - 528.
[5] K. C. Das, Conjectures on resolvent energy of graphs, MATCH Commun. Math. Comput. Chem. 81 (2019) 453 - 464.
[6] K. C. Das and I. Gutman, Comparing laplacian energy and Kirchhoff index, MATCH Commun. Math. Comput. Chem. 81 (2019) 419 - 424.
[7] K. C. Das, On the Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem. 82 (2019) 529 - 542.
[8] E. Kaya and A. D. Maden, A generalization of the incidence energy and the Laplacian-energy-like invariant, MATCH Commun. Math. Comput. Chem. 80 (2018) 467 - 480.
[9] I. Gutman, M. Robbiano, E. A. Martins, D. M. Cardoso, L. Medina and O. Rojo, Energy of line graphs, Linear Algebra Appl. 433 (7) (2010) 1312-1323, https://doi.org/10.1016/j.laa.2010.05.009.
[10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[11] M. H. Akhbari, K. K. Choong and F. Movahedi, A note on the minimum edge dominating energy of graphs, J. Appl. Math. Comput. 63 (2020) 295- 310, https://doi.org/10.1007/s12190-020-01318-7.
[12] F. Movahedi, The relation between the minimum edge dominating energy and the other energies, Discrete Math. Algorithms Appl. 12 (6) (2020) p. 2050078, https://doi.org/10.1142/S1793830920500780.
[13] F. Movahedi, Bounds on the minimum edge dominating energy of induced subgraphs of a graph, Discrete Math. Algorithms Appl. 13 (6) (2021) p. 2150080, https://doi.org/10.1142/S1793830921500804.
[14] F. Movahedi and M. H. Akhbari, New results on the minimum edge dominating energy of a graph, J. Math. Ext. 16 (2021) 1 - 17.
[15] F. Movahedi, Some results of eigenvalues and energy from minimum edgedominating matrix in caterpillars, Discontinuity Nonlinearity Complex. In Press, 2023.
[16] D. Wong, X. Wang and R. Chu, Lower bounds of graph energy in terms of matching number, Linear Algebra Appl. 549 276 - 286, https://doi.org/10.1016/j.laa.2018.03.040.
[17] S. Akbari, E. Ghorbani and S. Zare, Some relations between rank, chromatic number and energy of graphs, Discrete Math. 309 (3) (2009) 601-605, https://doi.org/10.1016/j.disc.2008.09.012.
[18] B. Cheng and B. Liu, On the nullity of graphs, El. J. Lin. Algebra 16 (2007) 60 - 67, https://doi.org/10.13001/1081-3810.1182.
[19] D. De Caen, D. A. Gregory and N. J. Pullman, The Boolean rank of zero one matrices, in: proceedings of the third caribbean conference on combinatorics and computing, barbados, (1981) 169 - 173.
[20] F. Ashraf, Energy, matching number and odd cycles of graphs, Linear Algebra Appl. 577 (2019) 159 - 167, https://doi.org/10.1016/j.laa.2019.04.029.
[21] J. A. De la Pe~na and J. Rada, On the energy of symmetric matrices and Coulson’s integral formula, Rev. Colomb. de Mat. 50 (2016) 175 - 188.
[22] G. Caprossi, D. Cvetkovic, I. Gutman and B. Hansen, Variable neighborhood graphs. Finding graphs with extreme energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984 - 986.
[23] W. So, Commutativity and spectra of Hermitian matrices, Linear Algebra Appl. 212-213 (1994) 121 - 129, https://doi.org/10.1016/0024-3795(94)90399-9.
[24] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications, Academic Press, New York, 1980.
[25] D. Sun, C. Xu and Y. Zhang, A novel method of 2D graphical representation for proteins and its application, MATCH Commun. Math. Comput. Chem. 75 (2016) 431 - 446.
[26] H. Wu, Y. Zhang, W. Chen and Z. Mu, Comparative analysis of protein primary sequences with graph energy, Physica A 437 (2015) 249 - 262, https://doi.org/10.1016/j.physa.2015.04.017.
[27] K. Yuge, Extended configurational polyhedra based on graph representation for crystalline solids, Trans. Mater. Res. Soc. Jpn. 43 (2018) 233 - 236.