[1] C. Dupin, Applications de la géométrie, Mémoire présenté à l’Académie des Sciences en 1816, publié à Paris en 1822.
[2] W. R. Hamilton, Theory of systems of rays, Part First and Part Second (1827). Part first: Trans. Royal Irish Academy, 15 (1828) 69 - 174. Part Second: manuscript. In Sir William Rowan Hamilton mathematical Works, vol. I, chapter I, Cambridge University Press, London, 1931.
[3] E. L. Malus, Optique dioptrique, Journal de lÉcole Polytechnique, 7 (1808) 1 - 44 and 84 - 129.
[4] C. M. Marle, A direct proof of malus theorem using the symplectic structure of the set of oriented straight lines, (2014),
https://doi.org/10.48550/arXiv.1409.0381.
[5] P. R. Bhattacharjee, The generalized vectorial laws of reflection and refraction, Eur. J. Phys. 26 (2005) p. 901, https://doi.org/10.1088/0143-0807/26/5/022.
[6] P. R. Bhattacharjee, On finding the correlation between the incident wavefront, reflected (refracted) wavefront and the reflecting surface (surface of discontinuity), Optik 127 (2016) 4819 - 4823, https://doi.org/10.1016/j.ijleo.2016.01.149.
[7] A. Bedford and D. S. Drumheller, Introduction to Elastic Wave Propagation, John Wiley and Sons Ltd, Chichester, England, 1994.
[8] M. V. Berry, Inflection reflection: images in mirrors whose curvature changes sign, Eur. J. Phys. 42 (2021) p. 065301, https://doi.org/10.1088/1361-6404/ac1abe.
[9] M. V. Berry, Distorted mirror images organised by cuspoid and umbilic caustics, J. Opt. 23 (2021) p. 125402, https://doi.org/10.1088/2040-8986/ac2f72.
[10] S. Mittal, Reflection of a point object in an arbitrary curved mirror, (2019), https://doi.org/10.48550/arXiv.1903.01074.
[11] G. M. Scarpello and A. Scimone, The work of tschirnhaus, la hire and leibniz on catacaustics and the birth of the envelopes of lines in the 17th century, Arch. Hist. Exact Sci. 59 (2005) 223 - 250.
[12] O. N. Stavroudis, The Optics of Rays, Wavefronts, and Caustics, Academic Press, New York, 1972.
[13] J. D. Lawrence, A Catalog of Special Plane Curves, Dover Publications, Inc., New York, 1972.
[14] V. A. Borovikov and B. E. Kinber, Geometrical Theory of Diffraction, Institution of Electrical Engineers, London, United Kingdom, 1994.
[15] J. A. Boyle, Using rolling circles to generate caustic envelopes resulting from reflected light, Amer. Math. Monthly 122 (2015) 452 - 466, https://doi.org/10.4169/amer.math.monthly.122.5.452.
[16] E. H. Lockwood, A Book of Curves, The Syndics of the Cambridge University Press, 1961.
[17] M. Trott, The Mathematica GuideBook for Graphics, Springer Science+ Business Media, New York, 2004.
[18] D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin Books, 1991.
[19] A. Ebrahimi and G. Barid Loghmani, Shape modeling based on specifying the initial B-spline curve and scaled BFGS optimization method, Multimed Tools Appl. 77 (2018) 30331 - 30351, https://doi.org/10.1007/s11042-018-6109-z.
[20] A. Ebrahimi, G. Barid Loghmani and M. Sarfraz, Capturing outlines of planar generic images by simultaneous curve fitting and sub-division, Journal of AI and Data Mining 8 (2020) 105 - 118, https://doi.org/10.22044/jadm.2019.6727.1788.
[21] A. Ebrahimi and G. Barid Loghmani, A composite iterative procedure with fast convergence rate for the progressive-iteration approximation of curves, J. Comput. Appl. Math. 359 (2019) 1 - 15, https://doi.org/10.1016/j.cam.2019.03.025.
[22] A. Jahanshahloo and A. Ebrahimi, Reconstruction of 3D shapes with B-spline surface using diagonal approximation BFGS methods, Multimed Tools Appl. 81 (2022) 38091 - 38111, https://doi.org/10.1007/s11042-022-13024-6.