The Borg’s Theorem for Singular Sturm-Liouville Problem with Non-Separated Boundary Conditions

Document Type : Original Scientific Paper

Authors

Department of Mathematics, University of Mazandaran, Babolsar, Iran

Abstract

‎In this paper‎, ‎we consider a Sturm-Liouville equation with non-separated boundary conditions on a finite interval‎. ‎We discuss some properties of solutions of the Sturm-Liouville equation‎, ‎where the potential function has a singularity in the finite interval‎. ‎We also calculate eigenvalues and prove the uniqueness of Borg's Theorem of this boundary value problem‎.
 

Keywords

Main Subjects


[1] S. Albeverio, R. Hryniv and Ya. Mykytyuk, Inverse spectral problems for Bessel operators, J. Differ. Equ. 241 (1) (2007) 130 - 159, https://doi.org/10.1016/j.jde.2007.06.017.
[2] G. Borg, Eine umkehrung der Sturm-Liouville eigenwertaufgabe, Acta Math. 78 (1) (1946) 1 - 96, https://doi.org/10.1007/BF02421600.
[3] R. Carlson, Inverse spectral theory for some singular Sturm-Liouville problems, J. Differ. Equ. 106 (1) (1993) 121 - 140,
https://doi.org/10.1006/jdeq.1993.1102.
[4] I. V. Stankevich, An inverse problem of spectral analysis for Hill’s equation, Soviet Math. Dokl. 11 (1970) 582 - 586.
[5] R. Hryniv and P. Sacks, Numerical solution of the inverse spectral problem for Bessel operators, J. Comput. Appl. Math. 235 (1) (2010) 120 - 136, https://doi.org/10.1016/j.cam.2010.05.018.
[6] B. M. Levitan, On the determination of the Sturm-Liouville operator from one and two spectra, Math. USSR Izv. 12 (1) (1978) 179 - 193.
[7] V. A. Marchenko, Some questions of the theory of one-dimensional linear differential operators of the second order, Tr. Mosk. Mat. Obs. 1 (1952) 327-420.
[8] S. Mosazadeh, A. Neamaty and M. Bagherzadeh, On the numerical solution of an inverse spectral problem with a singular potential, Int. J. Math. Oper. Res. 17 (2) (2020) 186 - 198.
[9] G. Freiling and V. Yurko, Boundary value problems with regular singularities and singular boundary conditions, Int. J. Math. Math. Sci. 2005 (9) 1481 - 1495, https://doi.org/10.1155/IJMMS.2005.1481.
[10] G. Freiling and V. Yurko, On the determination of differential equations with singularities and turning points, Results. Math. 41 (2002) 275 - 290, https://doi.org/10.1007/BF03322770.
[11] V. A. Sadovnichy, Uniqueness of the solution of the inverse problem for second-order equations with non-separable boundary conditions, Vest Mosc. State Univ., Ser. Matem. i Mekhan, 1 (1974) 143 - 151.
[12] I. M. Nabiev, Inverse problem of the spectral analysis for the Sturm-Liouville operator with non-separated boundary conditions and spectral parameter in the boundary condition, arXiv preprint arXiv:1903.05338 (2019).
[13] V. A. Sadovnichii, Ya. T. Sultanaev and A. M. Akhtyamov, Inverse Sturm-Liouville problem with nonseparated boundary conditions on a geometric graph, Diff Equat. 55 (2019) 194 - 204, https://doi.org/10.1134/S0012266119020058.
[14] V. A. Sadovnichii, Ya. T. Sultanaev and A. M. Akhtyamov, Inverse problem for an operator pencil with nonseparated boundary conditions, Dokl. Math. 79 (2009) 169 - 171, https://doi.org/10.1134/S1064562409020069.
[15] G. Freiling and V. Yurko, Recovering non-selfadjoint differential pencils with nonseparated boundary conditions, Appl. Anal. 94 (8) (2015) 1649 - 1661, https://doi.org/10.1080/00036811.2014.940918.
[16] V. Yurko, Inverse problems for differential operators with nonseparated boundary conditions in the central symmetric case, Tamkang J. Math. 48 (4) (2017) 377 - 387, https://doi.org/10.5556/j.tkjm.48.2017.2492.
[17] V. Yurko, The inverse spectral problem for differential operators with nonseparated boundary conditions, J. Math. Anal. Appl. 250 (1) (2000) 266-289, https://doi.org/10.1006/jmaa.2000.7098.
[18] C. G. Ibadzadeh, I. M. Nabiev, An inverse problem for Sturm-Liouville operators with non-separated boundary conditions containing the spectral parameter, J. Inverse ILL-Posed Proble, 24 (4) (2016) 407 - 411,
https://doi.org/10.1515/jiip-2015-0094.
[19] R. K. Miller and A. N. Michel, Ordinary differential equations, Academic Press, Waltham, 1982.
[20] R. Carlson, A Borg-Levinson Theorem for Bessel operators, Pac. J. Math. 177 (1) (1997) 1 - 26.
[21] H. Koyunbakan, Inverse spectral problem for some singular differential operators, Tamsui Oxf. J. Math. Sci. 25 (3) (2009) 277 - 283.
[22] V. Ambarzumian, Über eine frage der eigenwerttheorie, Z. Physik. 53 (1929) 690 - 695, https://doi.org/10.1007/BF01330827.
[23] L. Ahlfors, Complex Analysis, McGraw-Hill, New York 1979.