Row Stochastic Matrices and Linear Preservers of Matrix Majorization $T:\mathbb{R}_{m} \rightarrow \mathbb{R}_{n}$

Document Type : Original Scientific Paper

Authors

Department of Mathematics, Sirjan University of Technology, Sirjan, Iran

Abstract

‎A nonnegative square and real matrix $R$ is a row stochastic matrix if the sum of the entries of each row is equal to one‎. ‎Let $x$‎, ‎$y \in \mathbb{R}_{n}$‎. ‎The vector $x$ is said to be matrix majorized by $y$ and denoted by $ x\prec_{r} y$ if $x=yR$ for some row stochastic matrix $R$‎. ‎In the present paper‎, ‎we characterize the linear preservers of matrix majorization $T:\mathbb{R}_{m} \rightarrow \mathbb{R}_{n}$‎.

Keywords

Main Subjects


[1] T. Ando, Majorization, doubly stochastic matrices, and comparision of eigenvalues, Linear Algebra Appl. 118 (1989) 163 - 248, https://doi.org/10.1016/0024-3795(89)90580-6.
[2] L. B. Beasley, S. G. Lee and Y. H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra Appl. 367 (2003) 341 - 346, https://doi.org/10.1016/S0024-3795(02)00657-2.
[3] H. Chiang and C. K. Li, Generalized doubly stochastic matrices and linear preservers, Linear Multilinear Algebra 53 (2005) 1 - 11, https://doi.org/10.1080/03081080410001681599.
[4] F. D. M. Pería, P. G. Massey and L. E. Silvestre, Weak matrix majorization, Linear Algebra Appl. 403 (2005) 343 - 368,
https://doi.org/10.1016/j.laa.2005.02.003.
[5] A. Armandnejad and A. Manesh, GUT-majorization and its linear preservers, Electron. J. Linear Algebra 23 (2012) 646 - 654, https://doi.org/10.13001/1081-3810.1547.
[6] A. Armandnejad, Right gw-majorization on Mn;m, Bull. Iran. Math. Soc. 35 (2) (2009) 69 - 76.
[7] A. Armandnejad and A. Salemi, On linear preservers of lgw-majorization on Mn;m, Bull. Malaysian Math. Soc. 35 (3) (2012) 755 - 764.
[8] M. Dehghanian and A. Mohammadhasani, A note on multivariate majorization, J. Mahani Math. Res. 11 (2) (2022) 119 - 126, https://doi.org/10.22103/JMMRC.2022.19004.1204.
[9] A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra Appl. 423 (2007) 255 - 261, https://doi.org/10.1016/j.laa.2006.12.016.
[10] A. Mohammadhasani, Y. Sayyari and M. Sabzvari, G-tridiagonal majorization on Mn;m, Commun. Math. 29 (2021) 395 - 405.
[11] F. Khalooei, M. Radjabalipour and P. Torabian, Linear preservers of left matrix majorization, Electron. J. Linear Algebra 17 (2008) 304 - 315, https://doi.org/10.13001/1081-3810.1265.
[12] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix majorization on Rp, Electron. J. Linear Algebra 18 (2009) 88 - 97, https://doi.org/10.13001/1081-3810.1296.
[13] Y. Sayyari, A. Mohammadhasani and M. Dehghanian, Linear maps preserving signed permutation and substochastic matrices, Indian J. Pure Appl. Math. 54 (2023) 219 - 223, https://doi.org/10.1007/s13226-022-00245-6.
[14] G. Dahl, Matrix majorization, Linear Algebra Appl. 288 (1999) 53 - 73, https://doi.org/10.1016/S0024-3795(98)10175-1.
[15] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra 15 (2006) 260 - 268, https://doi.org/10.13001/1081-3810.1236.