[1] H. Aldweby and M. Darus, Certain subclass of meromorphically univalent functions defined by q-analogue of Liu-Srivastava operator, AIP Conf. Proc. 1571 (2013) 1069 - 1076, https://doi.org/10.1063/1.4858795.
[2] K. H. Challob, M. Darus and F. Ghanim, A linear operator and associated families of meromorphically q-hypergeometric functions, AIP Conf. Proc. 1830 (2017) p. 070013, https://doi.org/10.1063/1.4980962.
[3] K. A. Challab, M. Darus and F. Ghanim, On q-hypergeometric functions, Far East J. Math. Sci. 101 (2017) 2095 - 2109,
https://doi.org/10.17654/MS101102095.
[4] K. A. Challab, M. Darus and F. Ghanim, On a certain subclass of meromorphic functions defined by a new linear differential operator, J. Math. Fund. Sci. 49 (2017) 269-282, https://doi.org/10.5614/j.math.fund.sci.2017.49.3.5.
[5] S. Najafzadeh, q-derivative on p-valent meromorphic functions associated with connected sets, Surv. Math. Appl. 14 (2019) 149 - 158.
[6] S. H. Sayedain Boroujeni and S. Najafzadeh, Error function and certain subclasses of analytic univalent functions, Sahand Commun. Math. Anal 20 (2023) 107 - 117, https://doi.org/10.22130/scma.2022.556794.1136.
[7] S. H. Sayedain Boroujeni, S. Najafzadeh and I. Nikoufar, A new subclass of univalent holomorphic functions based on q- analogue of Noor operator, Int. J. Nonlinear Anal. Appl. In Press, https://doi.org/10.22075/ijnaa.2023.29020.4045.
[8] F. Ghanim, A study of a certain subclass of Herwitz-Lerch Zeta function related to a linear operator, Abstr. Appl. Anal. 2013 (2013) Article ID 763756,
https://doi.org/10.1155/2013/763756.
[9] F. Ghanim and M. Darus, New result of analytic functions related to Hurwitz-Zeta function, Sci. World J. 2013 (2013) Article ID 475643, https://doi.org/10.1155/2013/475643.
[10] S. Najafzadeh and E. Pezeshki, A subclass of analytic functions associated with the Hurwitz-Lerch Zeta function, Acta Universitatis Apulenisis 34 (2013) 355 - 369.
[11] H. M. Srivastava, A new family of the -generalized Hurwitz-Lerch Zeta functions with applications, Appl. Math. Inf. Sci. 8 (2014) 1485 - 1500, https://doi.org/10.12785/amis/080402.
[12] H. M. Srivastava, S. Gaboury and B. J. Fugére, Further results involving a class of generalized Hurwitz-Lerch Zeta functions, Russ. J. Math. Phys. 21 (2014) 521 - 537, https://doi.org/10.1134/S1061920814040104.
[13] H. M. Srivastava, R. K. Saxena, T. K. Pogány and R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 22 (2011) 487 - 506, https://doi.org/10.1080/10652469.2010.530128
[14] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-function: Thoery and Applications, Springer New York, NY, 2009.