Approximate Convexity for Set-Valued Maps

Document Type : Original Scientific Paper

Authors

‎Department of Pure Mathematics, ‎Imam Khomeini International University, ‎Qazvin‎, ‎Iran

Abstract

‎In this paper‎, ‎we extend the notion of approximate convexity to set-valued maps and obtain some relations between approximate convexity and approximate monotonicity of their normal subdifferential‎.

Keywords

Main Subjects


[1] A. Jofré, D. T. Luc and M. Théra, "-subdifferential and "- monotonicity, Nonlinear Anal. 33 (1998) 71 - 90, https://doi.org/10.1016/S0362-546X(97)00511-7.
[2] H. V. Ngai, D. T. Luc and M. Théra, Approximate convex functions, J. Nonlinear Convex Anal. 1 (2000) 155 - 176.
[3] A. Daniilidis and P. Georgiev, Approximate convexity and submonotonicity, J. Math. Anal. Appl. 291 (2004) 292 - 301,
https://doi.org/10.1016/j.jmaa.2003.11.004.
[4] D. Bhatia, A. Gupta and P. Arora, Optimality via generalized approximate convexity and quasiefficiency, Optim. Lett. 7 (2013) 127 - 135, https://doi.org/10.1007/s11590-011-0402-3.
[5] F. Malmir and A. Barani, Generalized submonotonicity and approximately convexity in Riemannian manifolds, Rend. Circ. Mat. Palermo 71 (2022) 299 - 323, https://doi.org/10.1007/s12215-021-00625-7.
[6] A. Götz and J. Jahn, The Lagrange multiplier rule in setvalued optimization, Siam J. Optim. 10 (2000) 331 - 344,
https://doi.org/10.1137/S1052623496311697.
[7] Y. Han and N. Huang, Continuity and convexity of a nonlinear scalarizing function in set optimization problems with applications, J. Optim. Theory Appl. 177 (2018) 679 - 695, https://doi.org/10.1007/s10957-017-1080-9.
[8] K. Seto, D. Kuroiwa and N. Popovici, A systematization of convexity and quasiconvexity concepts for set-valued maps, defined by l-type and u-type preorder relations. Optimization 67 (2018) 1077 - 1094, https://doi.org/10.1080/02331934.2018.1454920.
[9] M. Durea and R. Strugariu, Directional derivatives and subdifferentials for set-valued maps applied to set optimization, J. Global Optim. 85 (2023) 687- 707, https://doi.org/10.1007/s10898-022-01222-3.
[10] B. S. Mordukhovich, Variational Analysis and Generalized Differential I, Springer, Berlin, 2006.
[11] T. Q. Bao and B. S. Mordukhovich, Variational principles for set-valued mappings with applications to multiobjective optimization, Control Cybern. 36 (2007) 531 - 562.
[12] M. Oveisiha and J. Zafarani, Super efficient solutions for set-valued maps, Optimization 62 (2013) 817 - 834,
https://doi.org/10.1080/02331934.2012.712119.
[13] M. Oveisiha and M. Aghabagloo, Scalarized solutions of set-valued optimization problems and generalized variational-like inequalities, Filomat 31 (2017) 3953 - 3963, https://doi.org/10.2298/FIL1712953O.