A Simple Proof for the Being Eulerian of the Power Graphs $ P_{i}(D)$ for 3 ≤ i ≤ 6

Document Type : Original Scientific Paper

Authors

1 ‎Faculty of Mathematics‎, ‎ ‎Statistics and Computer Science‎, ‎‎Semnan University, ‎Semnan‎, ‎I‎. ‎R‎. ‎Iran

2 Department of Mathematics, Faculty of science, Lorestan University, Khorramabad, I. R. Iran

3 Department of Mathematics, Faculty of science, Khorramabad Branch, Islamic Azad University, Khorramabad, I. R. Iran

Abstract

‎In this article‎, ‎we employ a novel and unique method to analyze the Eulerian nature of the power graphs $ P_{i}(D) $ for 3 ⩽ i ⩽ 6‎. ‎Then‎, ‎we will mention some applications of Eulerian power graphs in computer networks‎.

Keywords

Main Subjects


[1] E. Mokhtarian Dehkordi, M. Eshaghi, S. Moradi and Z. Yarahmadi, Directed power graphs, Int. J. Nonlinear Anal. Appl. 12 (2021) 2619 - 26574, https://doi.org/10.22075/IJNAA.2021.5443.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, New York, Amsterdam, 1979.
[3] G. Chartrand and P. Zhang, A First Course in Graph Theory, Dover Publications, 2012.
[4] R. J. Wilson, Introduction to Graph Theory uPDF eBook, Pearson Education, 2015.
[5] B. Curtin, G. R. Pourgholi and H. Yousefi-Azari, On the punctured power graph of a finite group, Australas. J. Combin. 62 (2015) 1 - 7.
[6] S. Bera, On the intersection power graph of a finite group, Electron. J. Graph Theory Appl. 6 (2018) 178 -189, http://doi.org/10.5614/ejgta.2018.6.1.13
[7] S. Bera and A. K. Bhuniya, On enhanced power graphs of finite groups, J. Algebra its Appl. 17 (2018) p. 1850146,
https://doi.org/10.1142/S0219498818501463.
[8] T. Tamizh Chelvam and M. Sattanathan, Power graph of finite abelian groups, Algebra Discrete Math. 16 (2013) 33 - 41.
[9] J. Abawajy, A. Kelarev and M. Chowdhury, Power graphs: a survey, Electron. J. Graph Theory Appl. 1 (2013) 125 - 147,
http://doi.org/10.5614/ejgta.2013.1.2.6.
[10] A. K. Bhuniya and S. Bera, Normal subgroup based power graphs of a finite group, Comm. Algebra 45 (2017) 3251 - 3259, https://doi.org/10.1080/00927872.2016.1236122.
[11] P. N. Deepthi and R. Anitha, Applications of network analysis in bioinformatics, Springer, Cham. (2019) 79 - 84.
[12] F. Smarandache, W. B. Vasantha Kandasamy and K. Ilanthenral, Subset Vertex Graphs for Social Networks, EuropaNova, Brussels, 2018.
[13] P. A. Pevzner, H. Tang and M. S. Waterman, An Eulerian path approach to DNA fragment assembly, Proceedings of the national academy of sciences, 98 (2001) 9748 - 9753, https://doi.org/10.1073/pnas.17128509.
[14] Y. Zhang and M. S. Waterman, An Eulerian path approach to local multiple alignment for DNA sequences, Proceedings of the National Academy of Sciences, 102 (2005) 1285-1290, https://doi.org/10.1073/pnas.0409240102.
[15] R. Arratia, B. Bollobás, D. Coppersmith and G. B. Sorkin, Euler circuits and DNA sequencing by hybridization, Discrete Appl. Math. 104 (2000) 63 - 96, https://doi.org/10.1016/S0166-218X(00)00190-6.
[16] M. J. Karling, An Application of Eulerian Graphs in DNA Sequencing by Hybridization, Undergradute License in Mathematics (in Portuguese), 2015.
[17] B. Babaabasi, Cellular and Molecular Bioinformatics, 2th edition, Dr. Khalili publications, Tehran, Iran, 2017, 333p.