[1] M. Ahmad, A. Zada and J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type, Demonstr. Math. 52 (2019) 283-295, https://doi.org/10.1515/dema-2019-0024.
[2] F. Haddouchi, M. E. Samei and S. Rezapour, Study of a sequential -Hilfer fractional integro-differential equations with nonlocal BCs, J. Pseudo-Differ. Oper. Appl. 14 (2023) #61, https://doi.org/10.1007/s11868-023-00555-1.
[3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Amsterdam, 2006.
[4] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[5] J. R. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ. 63 (2011) 1-10, https://doi.org/10.14232/ejqtde.2011.1.63.
[6] A. H. Ganie, M. Houas, M. M. Albaidani and D. Fathima, Coupled system of three sequential caputo fractional differential equations: existence and stability analysis, Math. Methods Appl. Sci. 46 (2023) 13631-13644, https://doi.org/10.1002/mma.9278.
[7] M. Houas and M. E. Samei, Existence and stability of solutions for linear and nonlinear damping of q-fractional Duffing-Rayleigh problem, Mediterr. J. Math. 20 (2023) #148, https://doi.org/10.1007/s00009-023-02355-9.
[8] S. A. Murad and Z. A. Ameen, Existence and ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives, AIMS Math. 7 (2022) 6404 - 6419, https://doi.org/10.3934/math.2022357.
[9] L. Ur Rahman, M. Arshad, S. T. M. Thabet and I. Kedim, Iterative construction of fixed points for functional equations and fractional differential equations, J. Math. 2023 (2023) #6677650,
https://doi.org/10.1155/2023/6677650.
[10] S. Asawasamrit, S. K. Ntouyas, J. Tariboon and W. Nithiarayaphaks, Coupled systems of sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions, Symmetry 10 (2018) #701,
https://doi.org/10.3390/sym10120701.
[11] M. Houas and M. Bezziou, Existence and stability results for fractional differential equations with two Caputo fractional derivatives, Facta Univ. Ser. Math. Inform. 34 (2019) 341-357, https://doi.org/10.22190/FUMI1902341H.
[12] M. Houas, Z. Dahmani and E. Set, Uniqueness and existence of solutions for nonlinear fractional differential equations with two fractional orders, Mathematica 63 (2021) 254- 267, http://dx.doi.org/10.24193/mathcluj.2021.2.11.
[13] C. Kiataramkul, W. Yukunthorn, S. K. Ntouyas and J. Tariboon, Sequential Riemann-Liouville and Hadamard-Caputo fractional differential systems with nonlocal coupled fractional integral boundary conditions, Axioms 10 (2021) #174, https://doi.org/10.3390/axioms10030174.
[14] A. Y. A. Salamooni and D. D. Pawar, Existence and stability results for Hilfer-Katugampola-type fractional implicit differential equations with nonlocal conditions, J. Nonlinear Sci. Appl. 14 (2021) 124 - 138, http://dx.doi.org/10.22436/jnsa.014.03.02.
[15] S. T. M. Thabet, T. Abdeljawad, I. Kedim and M. Iadh Ayari, A new weighted fractional operator with respect to another function via a new modified generalized Mittag-Leffler law, Bound Value Probl. 2023 (2023) #100, https://doi.org/10.1186/s13661-023-01790-7.
[16] K. Balachandran, S. Kiruthika, and J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Mathematica Scientia 33 (2013) 712 - 720, https://doi.org/10.1016/S0252-9602(13)60032-6.
[17] G. Derfel and A. Iserles, The pantograph equation in the complex plane, J. Math. Anal. Appl. 213 (1997) 117 - 132,
https://doi.org/10.1006/jmaa.1997.5483.
[18] A. Iserles, Exact and discretized stability of the pantograph equation, Appl. Numer. Math. 24 (1997) 295 - 308, https://doi.org/10.1016/S0168-9274(97)00027-5.
[19] M. Z. Liu and D. Li, Properties of analytic solution and numerical solution of multi-pantograph equation, Appl. Math. Comput. 155 (2004) 853 - 871, https://doi.org/10.1016/j.amc.2003.07.017.
[20] A. S. Rafeeq, S. T. M. Thabet, M. O. Mohammed, I. Kedim and M. Vivas- Cortez, On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions, Alex. Eng. J. 86 (2024) 386-398,
https://doi.org/10.1016/j.aej.2023.11.081.
[21] S. T. M. Thabet, A. Boutiara, M. E. Samei, I. Kedim and M. Vivas-Cortez, Efficient results on fractional Langevin-Sturm-Liouville problem via generalized Caputo Atangana Baleanu derivatives, PLOS ONE 19 (2024) #e0311141, https://doi.org/10.1371/journal.pone.0311141.
[22] S. T. M. Thabet and I. Kedim, An investigation of a new Lyapunovtype inequality for Katugampola-Hilfer fractional BVP with nonlocal and integral boundary conditions, J. Inequal Appl. 2023 (2023) #162, https://doi.org/10.1186/s13660-023-03070-5.
[23] S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, M. E. Samei and M. Iadh Ayari, Solvability of %Hilfer fractional snap dynamic system on unbounded domains, Fractal Fract. 7 (2023) #607, https://doi.org/10.3390/fractalfract7080607.
[24] S. T. M. Thabet, M. M. Matar, M. A. Salman, M. E. Samei, M. Vivas- Cortez, I. Kedim, On coupled snap system with integral boundary conditions in the G-Caputo sense, AIMS Math. 8 (2023) 12576 - 12605, https://doi.org/10.3934/math.2023632.
[25] T. Abdeljawad, S. T. M. Thabet, I. Kedim and M. Vivas-Cortez, On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay, AIMS Math. 9 (2024) 7372 - 7395, https://doi.org/10.3934/math.2024357.
[26] A. Boutiara, S. Etemad, S. T. M. Thabet, S. K. Ntouyas, S. Rezapour and J. Tariboon, A mathematical theoretical study of a coupled fully hybrid (k; )-fractional order system of BVPs in generalized Banach spaces, Symmetry 15 (2023) #1041, https://doi.org/10.3390/sym15051041.
[27] S. Harikrishnan, E. M. Elsayed and K. Kanagarajan, Existence and uniqueness results for fractional pantograph equations involving $\psi$-Hilfer fractional derivative, Dyn. Contin. Discret. Impuls. Syst. 25 (2018) 319 - 328.
[28] A. Lachouri, M. E. Samei and A. Ardjouni, Existence and stability analysis for a class of fractional pantograph q-difference equations with nonlocal boundary conditions, Bound Value Probl. 2023 (2023) #2, https://doi.org/10.1186/s13661-022-01691-1.
[29] I. Ahmad, J. J. Nieto, G. U. Rahman and K. Shah, Existence and stability for fractional order pantograph equations with nonlocal conditions, Electron. J. Differential Equations 2020 (2020) #132,
https://doi.org/10.58997/ejde.2020.132.
[30] S. Belarbi, Z. Dahmani, M. Z. Sarikaya, A sequential fractional differential problem of pantograph type: existence uniqueness and illustrations, Turkish J. Math. 46 (2022) 563 - 586, https://doi.org/10.3906/mat-2108-81.
[31] R. George, M. Houas, M. Ghaderi, S. Rezapour and S. K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, Results Phys. 39 (2022) #105687, https://doi.org/10.1016/j.rinp.2022.105687.
[32] M. Houas, Existence and stability of fractional pantograph differential equations with Caputo-Hadamard type derivative, Turkish J. Ineq. 4 (2020) 1-10.
[33] M. Houas, K. Kaushik, A. Kumar, A. Khan and T. Abdeljawad, Existence and stability results of pantograph equation with three sequential fractional derivatives, AIMS Math. 8 (2023) 5216 - 5232, https://doi.org/10.3934/math.2023262.
[34] M. Houas, F. Martínez, M. E. Samei and M. K. A. Kaabar, Uniqueness and Ulam-Hyers-Rassias stability results for sequential fractional pantograph q-differential equations, J. Inequal. Appl. 2022 (2022) #93, https://doi.org/10.1186/s13660-022-02828-7.
[35] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theory Methods Appl. 69 (2008) 2677 - 2682, https://doi.org/10.1016/j.na.2007.08.042.
[36] F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the hadamard fractional derivatives, Adv. Differ. Equ. 2012 (2012) #142, https://doi.org/10.1186/1687-1847-2012-142.
[37] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, NewYork, 2003.