Pantograph System with Mixed Riemann-Liouville and‎ ‎Caputo-Hadamard‎ ‎Sequential~‎ ‎Fractional Derivatives‎: ‎Existence and Ulam-Stability

Document Type : Original Scientific Paper

Authors

1 ‎Department of Basic Sciences, ‎College of Science and Theoretical‎ ‎Studies, Saudi Electronic University, Riyadh 11673‎, ‎Saudi Arabia

2 ‎Laboratory‎, ‎FIMA‎, ‎UDBKM, ‎Khemis Miliana University, Algeria

3 ‎Department of Mathematics‎, ‎Faculty of Science‎, ‎Bu-Ali Sina University, ‎Hamedan‎, ‎Iran

Abstract

‎The pantograph equation improves the mathematical model of the system includes modeling the motion of the wire connected with the dynamics of the supports and modeling the dynamics of the pantograph‎. ‎The subject of this paper is the existence and Ulam stability of solutions for a coupled system of sequential pantograph equations of fractional order involving both Riemann-Liouville and Caputo-Hadamard fractional derivative operators‎. ‎By applying the classical theorems in nonlinear analysis‎, ‎such as the Banach's fixed point theorem and Leray-Schauder nonlinear alternative‎, ‎the uniqueness and existence of solutions are obtained‎. ‎Furthermore‎, ‎the Ulam stability results are also presented‎. ‎Finally‎, ‎we have shown the results in the applications section by presenting various examples to numerical effects which provided to support the theoretical findings.

Keywords

Main Subjects


[1] M. Ahmad, A. Zada and J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type, Demonstr. Math. 52 (2019) 283-295, https://doi.org/10.1515/dema-2019-0024.
[2] F. Haddouchi, M. E. Samei and S. Rezapour, Study of a sequential -Hilfer fractional integro-differential equations with nonlocal BCs, J. Pseudo-Differ. Oper. Appl. 14 (2023) #61, https://doi.org/10.1007/s11868-023-00555-1.
[3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Amsterdam, 2006.
[4] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[5] J. R. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ. 63 (2011) 1-10, https://doi.org/10.14232/ejqtde.2011.1.63.
[6] A. H. Ganie, M. Houas, M. M. Albaidani and D. Fathima, Coupled system of three sequential caputo fractional differential equations: existence and stability analysis, Math. Methods Appl. Sci. 46 (2023) 13631-13644, https://doi.org/10.1002/mma.9278.
[7] M. Houas and M. E. Samei, Existence and stability of solutions for linear and nonlinear damping of q-fractional Duffing-Rayleigh problem, Mediterr. J. Math. 20 (2023) #148, https://doi.org/10.1007/s00009-023-02355-9.
[8] S. A. Murad and Z. A. Ameen, Existence and ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives, AIMS Math. 7 (2022) 6404 - 6419, https://doi.org/10.3934/math.2022357.
[9] L. Ur Rahman, M. Arshad, S. T. M. Thabet and I. Kedim, Iterative construction of fixed points for functional equations and fractional differential equations, J. Math. 2023 (2023) #6677650, https://doi.org/10.1155/2023/6677650.
[10] S. Asawasamrit, S. K. Ntouyas, J. Tariboon and W. Nithiarayaphaks, Coupled systems of sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions, Symmetry 10 (2018) #701,
https://doi.org/10.3390/sym10120701.
[11] M. Houas and M. Bezziou, Existence and stability results for fractional differential equations with two Caputo fractional derivatives, Facta Univ. Ser. Math. Inform. 34 (2019) 341-357, https://doi.org/10.22190/FUMI1902341H.
[12] M. Houas, Z. Dahmani and E. Set, Uniqueness and existence of solutions for nonlinear fractional differential equations with two fractional orders, Mathematica 63 (2021) 254- 267, http://dx.doi.org/10.24193/mathcluj.2021.2.11.
[13] C. Kiataramkul, W. Yukunthorn, S. K. Ntouyas and J. Tariboon, Sequential Riemann-Liouville and Hadamard-Caputo fractional differential systems with nonlocal coupled fractional integral boundary conditions, Axioms 10 (2021) #174, https://doi.org/10.3390/axioms10030174.
[14] A. Y. A. Salamooni and D. D. Pawar, Existence and stability results for Hilfer-Katugampola-type fractional implicit differential equations with nonlocal conditions, J. Nonlinear Sci. Appl. 14 (2021) 124 - 138, http://dx.doi.org/10.22436/jnsa.014.03.02.
[15] S. T. M. Thabet, T. Abdeljawad, I. Kedim and M. Iadh Ayari, A new weighted fractional operator with respect to another function via a new modified generalized Mittag-Leffler law, Bound Value Probl. 2023 (2023) #100, https://doi.org/10.1186/s13661-023-01790-7.
[16] K. Balachandran, S. Kiruthika, and J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Mathematica Scientia 33 (2013) 712 - 720, https://doi.org/10.1016/S0252-9602(13)60032-6.
[17] G. Derfel and A. Iserles, The pantograph equation in the complex plane, J. Math. Anal. Appl. 213 (1997) 117 - 132,
https://doi.org/10.1006/jmaa.1997.5483.
[18] A. Iserles, Exact and discretized stability of the pantograph equation, Appl. Numer. Math. 24 (1997) 295 - 308, https://doi.org/10.1016/S0168-9274(97)00027-5.
[19] M. Z. Liu and D. Li, Properties of analytic solution and numerical solution of multi-pantograph equation, Appl. Math. Comput. 155 (2004) 853 - 871, https://doi.org/10.1016/j.amc.2003.07.017.
[20] A. S. Rafeeq, S. T. M. Thabet, M. O. Mohammed, I. Kedim and M. Vivas- Cortez, On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions, Alex. Eng. J. 86 (2024) 386-398,
https://doi.org/10.1016/j.aej.2023.11.081.
[21] S. T. M. Thabet, A. Boutiara, M. E. Samei, I. Kedim and M. Vivas-Cortez, Efficient results on fractional Langevin-Sturm-Liouville problem via generalized Caputo Atangana Baleanu derivatives, PLOS ONE 19 (2024) #e0311141, https://doi.org/10.1371/journal.pone.0311141.
[22] S. T. M. Thabet and I. Kedim, An investigation of a new Lyapunovtype inequality for Katugampola-Hilfer fractional BVP with nonlocal and integral boundary conditions, J. Inequal Appl. 2023 (2023) #162, https://doi.org/10.1186/s13660-023-03070-5.
[23] S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, M. E. Samei and M. Iadh Ayari, Solvability of %􀀀Hilfer fractional snap dynamic system on unbounded domains, Fractal Fract. 7 (2023) #607, https://doi.org/10.3390/fractalfract7080607.
[24] S. T. M. Thabet, M. M. Matar, M. A. Salman, M. E. Samei, M. Vivas- Cortez, I. Kedim, On coupled snap system with integral boundary conditions in the G-Caputo sense, AIMS Math. 8 (2023) 12576 - 12605, https://doi.org/10.3934/math.2023632.
[25] T. Abdeljawad, S. T. M. Thabet, I. Kedim and M. Vivas-Cortez, On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay, AIMS Math. 9 (2024) 7372 - 7395, https://doi.org/10.3934/math.2024357.
[26] A. Boutiara, S. Etemad, S. T. M. Thabet, S. K. Ntouyas, S. Rezapour and J. Tariboon, A mathematical theoretical study of a coupled fully hybrid (k;  )-fractional order system of BVPs in generalized Banach spaces, Symmetry 15 (2023) #1041, https://doi.org/10.3390/sym15051041.
[27] S. Harikrishnan, E. M. Elsayed and K. Kanagarajan, Existence and uniqueness results for fractional pantograph equations involving $\psi$-Hilfer fractional derivative, Dyn. Contin. Discret. Impuls. Syst. 25 (2018) 319 - 328.
[28] A. Lachouri, M. E. Samei and A. Ardjouni, Existence and stability analysis for a class of fractional pantograph q-difference equations with nonlocal boundary conditions, Bound Value Probl. 2023 (2023) #2, https://doi.org/10.1186/s13661-022-01691-1.
[29] I. Ahmad, J. J. Nieto, G. U. Rahman and K. Shah, Existence and stability for fractional order pantograph equations with nonlocal conditions, Electron. J. Differential Equations 2020 (2020) #132, https://doi.org/10.58997/ejde.2020.132.
[30] S. Belarbi, Z. Dahmani, M. Z. Sarikaya, A sequential fractional differential problem of pantograph type: existence uniqueness and illustrations, Turkish J. Math. 46 (2022) 563 - 586, https://doi.org/10.3906/mat-2108-81.
[31] R. George, M. Houas, M. Ghaderi, S. Rezapour and S. K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, Results Phys. 39 (2022) #105687, https://doi.org/10.1016/j.rinp.2022.105687.
[32] M. Houas, Existence and stability of fractional pantograph differential equations with Caputo-Hadamard type derivative, Turkish J. Ineq. 4 (2020) 1-10.
[33] M. Houas, K. Kaushik, A. Kumar, A. Khan and T. Abdeljawad, Existence and stability results of pantograph equation with three sequential fractional derivatives, AIMS Math. 8 (2023) 5216 - 5232, https://doi.org/10.3934/math.2023262.
[34] M. Houas, F. Martínez, M. E. Samei and M. K. A. Kaabar, Uniqueness and Ulam-Hyers-Rassias stability results for sequential fractional pantograph q-differential equations, J. Inequal. Appl. 2022 (2022) #93, https://doi.org/10.1186/s13660-022-02828-7.
[35] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theory Methods Appl. 69 (2008) 2677 - 2682, https://doi.org/10.1016/j.na.2007.08.042.
[36] F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the hadamard fractional derivatives, Adv. Differ. Equ. 2012 (2012) #142, https://doi.org/10.1186/1687-1847-2012-142.
[37] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, NewYork, 2003.