Collocation‎ ‎Method‎ ‎Based‎ ‎on‎ ‎Rational Gegenbauer Functions for Solving the Two Dimensional Stagnation Point Flow

Document Type : Original Scientific Paper

Author

‎Department of Applied Mathematics, Faculty of Mathematical Science, ‎University of Kashan, ‎Kashan‎, ‎I‎. ‎R‎. ‎Iran

Abstract

‎This work applies rational Gegenbauer functions and a collocation scheme to solve the governing equation for two-dimensional fluid flow near a stagnation point‎, ‎known as Hiemenz flow‎. ‎We utilize a truncated series expansion of rational Gegenbauer functions on the semi-infinite interval and Gegenbauer–Gauss points to reduce the problem to a set of nonlinear algebraic equations‎. ‎Newton's iteration technique is employed to solve these algebraic equations‎. ‎The scheme is straightforward to implement‎, ‎and our new results are compared with established numerical results‎, ‎demonstrating the method's effectiveness and accuracy‎.

Keywords

Main Subjects


[1] K. Hiemenz, Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J. 326 (1911) 321–324.
[2] D. Rostamy, F. Zabihi, The general analytical and numerical solutions for the modified KdV equation with convergence analysis, Math. Methods Appl. Sci. 36 (2013) 896–907, https://doi.org/10.1002/mma.2647.
[3] D. Rostamy, K. Karimi, F. Zabihi and M. Alipour, Numerical solution of Electrodynamic flow by using Pseudo-Spectral Collocation method, Vietnam J. Math. 41 (1) (2013) 43–49, https://doi.org/10.1007/s10013-013-0007-5.
[4] A. Saadatmandi, Z. Sanatkar and S. P. Toufighi, Computational methods for solving the steady flow of a third grade fluid in a porous half space, Appl. Math. Comput. 298 (2017) 133–140, https://doi.org/10.1016/j.amc.2016.11.018.
[5] T. Tajvidi, M. Razzaghi and M. Dehghan, Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate, Chaos Solitons Fractals 35 (2008) 59–66, https://doi.org/10.1016/j.chaos.2006.05.031.
[6] F. Zabihi, Chebyshev finite difference method for steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether, MATCH Commun. Math. Comput. Chem. 84 (2020) 131–140.
[7] A. Hajiollow and F. Zabihi, The effect of radial basis functions (RBFs) method in solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions, Iranian J. Math. Chem. 12 (2021) 239–261, https://doi.org/10.22052/IJMC.2021.242232.1561.
[8] C. Y. Wang, Similarity stagnation point solutions of the Navier-Stokes equations- review and extension, Eur. J. Mech. B/Fluids. 27 (2008) 678–683, https://doi.org/10.1016/j.euromechflu.2007.11.002.
[9] A. Golbabai and S. Samadpour, Rational Chebyshev collocation method for the similarity solution of two dimensional stagnation point flow, Indian J. Pure Appl. Math. 49 (2018) 505–519, https://doi.org/10.1007/s13226-018-0280-9.
[10] L. Howarth, On the calculation of steady flow in the boundary layer near the surface of a cylinder in a stream, ARC RM 1632 (1935).
[11] R. S. R. Gorla, Unsteady viscous flow in the vicinity Of an axisymmetric stagnation point On a circular cylinder, Int. J. Eng. Sci. 17 (1979) 87–93, https://doi.org/10.1016/0020-7225(79)90009-0.
[12] S. Abbasbandy, K. Parand, S. Kazaem and A. R. Sanaei Kia, A numerical approach on Hiemenz flow problem using radial basis functions, Int. J. Indust. Math. 5 (2013) 65–73.
[13] G. B. yu, Gegenbauer approximation and its applications to differential equations on the whole line, J. Math. Anal. Appl. 226 (1998) 180–206, https://doi.org/10.1006/jmaa.1998.6025.
[14] G. B. yu, Gegenbauer approximation and its applications to differential equations with rough asymptotic behaviors at infinity, Appl. Numer. Math. 38 (2001) 403–425, https://doi.org/10.1016/S0168-9274(01)00039-3.
[15] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral methods in fluids dynamics, Springer Berlin, Heidelberg, 1988.
[16] B. Y. Guo, J. Shen and Z. Q. Wang, A rational approximation and its applications to differential equations on the half line, J. Sci. Comput. 15 (2000) 117–147, https://doi.org/10.1023/A:1007698525506.
[17] A. Shahmansoorian and P. Ahmadi, Characteristic functions assignment by adding perturbation, Math. Interdisc. Res. 8 (2023) 359–367, https://doi.org/10.22052/MIR.2023.252619.1395.
[18] J. Shen, T. Tang and L. L. Wang, Spectral Methods, Algorithms, Analysis and Applications, Springer, New York, 2011.
[19] K. Parand, M. Dehghan and F. Baharifard, Solving a laminar boundary layer equation with the rational Gegenbauer functions, Appl. Math. Model. 37 (2013) 851–863, https://doi.org/10.1016/j.apm.2012.02.041.
[20] K. Parand, A. Bahramnezhad, H. Farahani, A numerical method based on rational Gegenbauer functions for solving boundary layer flow of a Powell- Eyring non-Newtonian fluid, Comput. Appl. Math. 37 (2018) 6053–6075, https://doi.org/10.1007/s40314-018-0679-2.
[21] J. P. Boyd, The optimization of convergence for Chebyshev polynomial methods in an unbounded domain, J. Comput. Phys. 45 (1982) 43–79, https://doi.org/10.1016/0021-9991(82)90102-4.
[22] J. P. Boyd , Chebyshev and Fourier Spectral Methods, Springer-Verlag Berlin, Heidelberg 1989.
[23] J. A. C. Weideman, Computation of the complex error function, SIAM J. Numer. Anal. 31 (1994) 1497–1518, https://doi.org/10.1137/0731077.
[24] F. Baharifard, K. Parand and M. M. Rashidi, Novel solution for heat and mass transfer of a MHD micropolar fluid flow on a moving plate with suction and injection, Eng. Comput. 38 (2020) 13–30, https://doi.org/10.1007/s00366-020-01026-7.