[1] E. N. Lorenz, Deterministic nonperiodic flow,J. Atmos. Sci 20 (1963) 130-141.
[2] R. Femat, J. Alvarez-Ramirez, B. Castillo-Toledo and J. Gonzalez, On robust chaos suppression in a class of no driven oscillators: application to the Chua’s circuit, IEEE Trans. Circuits Syst. I 46 (1999) 1150 - 1152.
[3] R. Femat, R. Jauregui-Ortiz and G. Solís-Perales, A chaos-based communication scheme via robust asymptotic feedback, IEEE Trans. Circ. Syst. I 48 (2001) 1161 - 1169.
[4] E. A. Jackson and A. Hübler, Periodic entrainment of chaotic logistic map dynamics, Phys. D 44 (1990) 407 - 420.
[5] E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett. 64 (1990) #1196.
[6] M. J. Ogorzalek and Taming chaos-II: Control, IEEE Trans. Circuits Syst. I, 40 (1993) 700 - 706.
[7] B. B. Sharma and I. N. Kar, Contraction theory based adaptive synchronization of chaotic systems, Chaos, Solitons & Fractals 41 (2009) 2437 - 2447.
[8] M. T. Yassen, Controlling chaos and synchronization for the new chaotic system using linear feedback control, Chaos Solitons Fractals 26 (2005) 913-920, https://doi.org/10.1016/j.chaos.2005.01.047.
[9] W. Lohmiller and J. J. E. Slotine, On contraction analysis for nonlinear systems, Automatica 34 (1998) 683 - 696, https://doi.org/10.1016/S0005-1098(98)00019-3.
[10] J. P. Singh and B. K. Roy, Hidden attractors in a new complex generalized Lorenz hyperchaotic system, its synchronization using adaptive contraction theory, circuit validation and application, Nonlinear Dyn. 92 (2018) 373-394,
https://doi.org/10.1007/s11071-018-4062-z.
[11] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990) #821-824, https://doi.org/10.1103/PhysRevLett.64.821.
[12] M. Boutayeb, M. Darouach and H. Rafaralahy, Generalized state-space observers for chaotic synchronization with applications to secure communication, IEEE Trans. Circuits and Systems I 49 (2002) 345 - 349.
[13] J. Hu, S. Chen and L. Chen, Adaptive control for anti-synchronization of Chua’s chaotic system, Phys. Lett. A 339 (2005) 455 - 460,
https://doi.org/10.1016/j.physleta.2005.04.002.
[14] T. L. Liao and N. S. Huang, An observer based approach for chaotic synchronization and secure communication, IEEE Trans. Circuits Syst. I 46 (1999) 1144 - 1150, https://doi.org/10.1109/81.788817.
[15] B. Naderi and H. Kheiri, Exponential synchronization of chaotic system and application in secure communication, Optik 127 (2016) 2407 - 2412, https://doi.org/10.1016/j.ijleo.2015.11.175.
[16] B. Naderi, H. Kheiri and A. Heydari, Secure communication based on synchronization of three chaotic systems, Int. J. Nonlinear Sci. 27 (2019) 53-64.
[17] Y. Wang, Z. H. Guan and H. O. Wang, Feedback and adaptive control for the synchronization of Chen system via a single variable, Phys. Lett. A 312 (2003) 34 - 40, https://doi.org/10.1016/S0375-9601(03)00573-5.
[18] L. O. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory 18 (1971) 507 - 519.
[19] D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found, Nature 453 (2008) 80 - 83,
https://doi.org/10.1038/nature06932.
[20] F. Corinto, A. Ascoli and M.Gilli, Nonlinear dynamics of memristor oscillators, IEEE Trans. Circuits Syst. I 58 (2011) 1323 - 1336, https://doi.org/10.1109/TCSI.2010.2097731.
[21] Z. J. Li and Y. C. Zeng, A memristor oscillator based on a twin-T network, Chinese Phys. B 22 (2013) #040502, https://doi.org/10.1088/1674-1056/22/4/040502.
[22] B. Bo-Cheng, L. Zhong and X. Jian-Ping, Transient chaos in smooth memristor oscillator, Chinese Phys. B 19 (2010) #030510, https://doi.org/10.1088/1674-1056/19/3/030510.
[23] R. K. Budhathoki, M. P. D. Sah, C. Yang, H. Kim and L. O. Chua, Transient behavior of multiple memristor circuits based on flux charge relationship, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 24 (2014) #1430006, https://doi.org/10.1142/S0218127414300067.
[24] A. Buscarino, L. Fortuna, M. Frasca and L. V. Gambuzza, A gallery of chaotic oscillators based on HP memristor, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 23 (2013) #1330015, https://doi.org/10.1142/S0218127413300152.
[25] R. Tetzlaff, Memristors and Memristive Systems, Springer New York, NY, 2013.
[26] M. E. Sahin, Z. G. Cam Taskiran, H. Guler, S. E. Hamamci, Application and modeling of a novel 4D memristive chaotic system for communication systems, Circuits Syst. Signal Process 39 (2020) 3320 - 3349, https://doi.org/10.1007/s00034-019-01332-6.
[27] X. Wu, S. He, W. Tan and H. Wang, From memristor-modeled jerk system to the nonlinear systems with memristor, Symmetry 14 (2022) #659, https://doi.org/10.3390/sym14040659.
[28] G. Russo and M. di Bernardo, An algorithm for the construction of synthetic self synchronizing biological circuits, In International Symposium on Circuits and Systems (2009) 305-308, https://doi.org/10.1109/ISCAS.2009.5117746.
[29] S. Sabarathinam, V. Papov, Z. P. Wang, R. Vadivel and A. P. P. A. N Gunasekaran, Dynamics analysis and fractional-order nonlinearity system via memristor-based Chua oscillator, Pramana 97 (2023) #107, https://doi.org/10.1007/s12043-023-02590-5.
[30] W. Lohmiller and J. J. E Slotine, Control system design for mechanical systems using contraction theory, IEEE Trans. Automat. Control 45 (2000) 984 - 989, https://doi.org/10.1109/9.855568.
[31] J. P. Singh, S. Jafari, A. J. M. Khalaf, V-T Pham and B. K. Roy, A modified chaotic oscillator with megastability and variable boosting and its synchronisation using contraction theory-based control which is better than backstepping and nonlinear active control, Pramana 94 (2020) 1 - 14, https://doi.org/10.1007/s12043-020-01993-y.
[32] X. Zhang and B. Cui, Synchronization of Lurie system based on contraction analysis, Appl. Math. Comput. 223 (2013) 180 - 190, https://doi.org/10.1016/j.amc.2013.07.080.
[33] G. Russo, Analysis, Control and Synchronization of Nonlinear Systems and Networks via Contraction Theory: Theory and Applications Ph.D. Thesis, Department of Systems and Computer Engineering University of Naples Federico II, Napoli, Italy 2010.
[34] B. B. Sharma and I. N. Kar, Observer-based synchronization scheme for a class of chaotic systems using contraction theory, Nonlinear Dyn 63 (2011) 429 - 445, https://doi.org/10.1007/s11071-010-9813-4.
[35] L. Ren, J. Mou, H. Jahanshahi, A. A. Al-Barakati and Y. Cao, A new multistable chaotic system with memristor and memcapacitor for fractional-order: dynamical analysis, implementation, and synchronization, Eur. Phys. J. Plus 138 (2023) 1 - 20,
https://doi.org/10.1140/epjp/s13360-023-04379-2.
[36] G. Russo, M. di Bernardo and J. J. E. Slotine, A graphical algorithm to prove contraction of nonlinear circuits and systems, IEEE Transactions on Circuits and Systems I 58 (2011) 336 - 348, https://doi.org/10.1109/TCSI.2010.2071810.
[37] Y. Ruisong, A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism, Opt. Commun. 284 (2011) 5290 - 5298, https://doi.org/10.1016/j.optcom.2011.07.070.
[38] M. di Bernardo, G. Russo and J. J. Slotine, An algorithm to prove contraction, consensus, and network synchronization, In Proceedings of the International Workshop NecSys 42 (2009) 60-65, https://doi.org/10.3182/20090924-3-IT-4005.00011.
[39] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag New York, Inc. 2001.
[40] H. Sayama, Introduction to the Modeling and Analysis of Complex Systems, Open SUNY Textbooks, 2015.
[41] C. K. Volos, I. M. Kyprianidis and I. N. Stouboulos, Image encryption process based on chaotic synchronization phenomena, Signal Process. 93 (2013) 1328 - 1340, https://doi.org/10.1016/j.sigpro.2012.11.008.
[42] Y. Xu, H.Wang, Y. Li and B. Pei, Image encryption based on synchronization of fractional chaotic systems, Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 3735 - 3744, https://doi.org/10.1016/j.cnsns.2014.02.029.
[43] S. Lian, J. Sun and Z. Wang, A block cipher based on a suitable use of chaotic standard map, Chaos, Solitons & Fractals 26 (2005) 117 - 129, https://doi.org/10.1016/j.chaos.2004.11.096.
[44] A. H. Abdullah, R. Enayatifar and M. Lee, A hybrid genetic algorithm and chaotic function model for image encryption, AEU–Int. J. Electron. Commun. 66 (2012) 806 - 816, https://doi.org/10.1016/j.aeue.2012.01.015.
[45] G. Ye, Image scrambling encryption algorithm of pixel bit based on chaos map, Pattern Recognit. Lett. 31 (2010) 347 - 354, https://doi.org/10.1016/j.patrec.2009.11.008.