[1] E. Pap, Pseudo-additive measures and their aplications, Handbook of Measure Theory II (2002) 1403-1468, https://doi.org/10.1016/B978-044450263-6/50036-1.
[2] E. Pap, Generalized real analysis and its applications, Internat. J. Approx. Reason. 47 (2008) 368 - 386,
https://doi.org/10.1016/j.ijar.2007.05.015.
[3] E. Pap, M. Štrboja and I. Rudas, Pseudo-Lp space and convergence, Fuzzy Sets and Systems 238 (2014) 113 - 128,
https://doi.org/10.1016/j.fss.2013.06.010.
[4] M. Takács, Approximate reasoning in fuzzy systems based on pseudo-analysis and uninorm residuum, Acta Polytech. Hung. 1 (2004) 49 - 62.
[5] J. -L. Marichal, The influence of variables on pseudo-Boolean functions with applications to game theory and multicriteria decision making, Discrete Appl. Math. 107 (2000) 139 - 164, https://doi.org/10.1016/S0166-218X(00)00264-X.
[6] E. Pap and N. Ralevic, Pseudo-Laplace transform, Nonlinear Anal. 33 (1998) 533 - 550, https://doi.org/10.1016/S0362-546X(97)00568-3.
[7] R. J. Donovan, D. R. Hicks, J. A. Kryka, D. J. Lambert and R. R. Roediger, Optimizing apparatus and method for defining visibility boundaries in compiled code, U.S. Patent 6,090,155, issued July 18, 2000.
[8] M. Sugeno and T. Murofushi, Pseudo-additive measures and integrals, J. Math. Anal. Appl. 122 (1987) 197 - 222, https://doi.org/10.1016/0022-247X(87)90354-4.
[9] E. Pap and M. Štrboja, Generalization of the Jensen inequality for pseudo-integral, Inform. Sci. 180 (2010) 543 - 548,
https://doi.org/10.1016/j.ins.2009.10.014.
[10] S. Abbaszadeh, A. Ebadian and M. Jaddi, Hölder type integral inequalities with different pseudo-operations, Asian-Eur. J. Math. 12 (2019) #1950032, https://doi.org/10.1142/S1793557119500323.
[11] S. Abbaszadeh and A. Ebadian, Nonlinear integrals and Hadamard-type inequalities, Soft Comput. 22 (2018) 2843 - 2849, https://doi.org/10.1007/s00500-017-2776-3.
[12] H. Agahi, R. Mesiar and Y. Ouyang, Chebyshev type inequalities for pseudo-integrals, Nonlinear Anal. 72 (2010) 2737 - 2743, https://doi.org/10.1016/j.na.2009.11.017.
[13] H. Agahi, Y. Ouyang, R. Mesiar, E. Pap and M. Štrboja, Hölder and Minkowski type inequalities for pseudo-integral, Appl. Math. Comput. 217 (2011) 8630 - 8639, https://doi.org/10.1016/j.amc.2011.03.100.
[14] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, London, 1964.
[15] H. S. Bear, A Primer of Lebesgue Integration, Academic Press, 2002.
[16] R. G. Bartle, The Elements of Integration and Lebesgue Measure, John Wiley & Sons, 2014.
[17] K. Knopp, Uber reihen mit positivern gliedern, J. Lond. Math. Soc. 3 (1928) 205 - 211, https://doi.org/10.1112/jlms/s1-3.3.205.
[18] M. L. Johansson, L. E. Persson and A. Wedestig, Carleman’s inequality -history, proofs and some new generalizations, J. Inequal. Pure Appl. Math. 4 (2003) #53.
[19] A. Belghazi, F. Smadhi, N. Zaidi and O. Zair, Carleman inequalities for the heat equation in singular domains, C. R. Math. 348 (2010) 277 - 282, https://doi.org/10.1016/j.crma.2010.02.007.
[20] M. Z. Sarikaya and H. Yildirim, Some Hardy type integral inequalities, J. Inequal. Pure Appl. Math. 7 (2006) #178.
[21] S. Kaijser, L. -E. Persson and A. Öberg, On Carleman’s and Knopp’s inequalities, J. Approx. Theory 117 (2002) 140 151,
https://doi.org/10.1006/jath.2002.3684.
[22] J. Pecaric and K. B. Stolarsky, Carleman’s inequality: history and new generalizations, Aequationes Math. 61 (2001) 49 - 62, https://doi.org/10.1007/s000100050160.
[23] Y. X. Ma and T. F. Guo, A Carleman type inequality for sugeno integral, Adv. Mater. Res. 694 (2013) 2874 - 2876, https://doi.org/10.4028/www.scientific.net/AMR.694-697.2874.
[24] H. Román-Flores, A. Flores-Franulic, I. Aguirre-Cipe and M. Romero- Martlnez, A Sugeno integral inequality of Carleman-Knopp type and some refinements, Fuzzy Sets and Systems 396 (2020) 72 - 81, https://doi.org/10.1016/j.fss.2019.05.013.
[25] P. Benvenuti, R. Mesiar and D. Vivona, Monotone set functions-based integrals, Handbook of Measure Theory eds. E. Pap (Elsevier, Amsterdam, (2002) 1329 - 1379, https://doi.org/10.1016/B978-044450263-6/50034-8.
[26] W. Kuich and A. Salomaa, Semirings, Automata, Languages, Springer-Verlag, Berlin, 1986.
[27] E. Pap, Null-Additive Set Functions, Springer Dordrecht, London, 1995.
[28] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.
[29] R. Mesiar and E. Pap, Idempotent integral as limit of g-integrals, Fuzzy Sets and Systems 102 (1999) 385 - 392, https://doi.org/10.1016/S0165-0114(98)00213-9.
[30] P. Jain, Classical inequalities for pseudo-integral, Georgian Math. J. 29 (2022) 373 - 385, https://doi.org/10.1515/gmj-2021-2136.
[31] A. Boccuto and D. Candeloro, Differential calculus in Riesz spaces and applications to g-calculus, Mediterr. J. Math. 8 (2011) 315 - 329, https://doi.org/10.1007/s00009-010-0072-x.