[1] D. Baleanu, J. A. T. Machado and A. C. J. Luo, Fractional dynamics and control, Springer Science & Business Media, 2011.
[2] R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000.
[3] J. Klafter, S. C. Lim and R. Metzler, Fractional dynamics: recent advances, World Scientific, 2011.
[4] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
[5] D. L. Turcotte, Fractals and chaos in geology and geophysics, Cambridge university press, 1997.
[6] K. Diethelm, The analysis of fractional differential equations: An applicationoriented exposition using differential operators of Caputo type, Springer Berlin, Heidelberg, 2010.
[7] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2010.
[8] H. M. Baskonus, T. A. Sulaiman and H. Bulut, On the new wave behavior to the klein–gordon–zakharov equations in plasma physics, Indian J. Phys. 93 (2019) 393 - 399, https://doi.org/10.1007/s12648-018-1262-9.
[9] M. Dehghan and A. Nikpour, The solitary wave solution of coupled klein-gordon-zakharov equations via two different numerical methods, Comput. Phys. Commun. 184 (2013) 2145 - 2158,
https://doi.org/10.1016/j.cpc.2013.04.010.
[10] T.Wang, J. Chen and L. Zhang, Conservative difference methods for the kleingordon-zakharov equations, J. Comput. Appl. Math. 205 (2007) 430 - 452, https://doi.org/10.1016/j.cam.2006.05.008.
[11] M. G. Hafez, Exact solutions to the (3+1)-dimensional coupled klein-gordonzakharov equation using $\exp(-\phi(\xi))$-expansion method, Alexandria Eng. J. 55 (2016) 1635 - 1645, https://doi.org/10.1016/j.aej.2016.02.010.
[12] M. S. Ismail and A. Biswas, 1-soliton solution of the klein-gordon-zakharov equation with power law nonlinearity, Appl. Math. Comput. 217 (2010) 4186-4196, https://doi.org/10.1016/j.amc.2010.10.035.
[13] J. Li, Exact explicit travelling wave solutions for (n+1)-dimensional kleingordon-zakharov equations, Chaos Solitons Fractals 34 (2007) 867 - 871, https://doi.org/10.1016/j.chaos.2006.03.088.
[14] H. Triki and N. Boucerredj, Soliton solutions of the klein-gordon-zakharov equations with power law nonlinearity, Appl. Math. Comput. 227 (2014) 341-346, https://doi.org/10.1016/j.amc.2013.10.093.
[15] S. Saha Ray and S. Sahoo, Comparison of two reliable analytical methods based on the solutions of fractional coupled klein–gordon–zakharov equations in plasma physics, Comput. Math. Math. Phys. 56 (2016) 1319 - 1335, https://doi.org/10.1134/S0965542516070162.
[16] A. Akbulut and F. Tascan, Application of conservation theorem and modified extended tanh-function method to (1+ 1)-dimensional nonlinear coupled klein–gordon–zakharov equation, Chaos Solitons Fractals 104 (2017) 33-40,
https://doi.org/10.1016/j.chaos.2017.07.025.
[17] J. Jia, H. Xu and X. Jiang, Fast evaluation for the two-dimensional nonlinear coupled time–space fractional klein–gordon–zakharov equations, Appl. Math. Lett. 118 (2021) #107148, https://doi.org/10.1016/j.aml.2021.107148.
[18] F. B. Benli, Analysis of fractional klein-gordon-zakharov equations using efficient method, Numer. Methods Partial Differential Equations 38 (2022) 525 - 539, https://doi.org/10.1002/num.22662.
[19] R. Thoudam, Numerical solutions of coupled klein-gordon-zakharov equations by quintic b-spline differential quadrature method, Appl. Math. Comput. 307 (2017) 50 - 61, https://doi.org/10.1016/j.amc.2017.02.049.
[20] Z.-Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006) 193 - 209, https://doi.org/10.1016/j.apnum.2005.03.003.
[21] J. P. Boyd, Chebyshev and Fourier spectral methods, Dover Publications, Inc, New York, 2000.
[22] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge university press, 1990.
[23] A. Mohebbi, M. Abbaszadeh and M. Dehghan, High-order difference scheme for the solution of linear time fractional klein–gordon equations, Numer. Methods Partial Differential Equations 30 (2014) 1234 - 1253, https://doi.org/10.1002/num.21867.