Characterization of Approximate a-Birkhoff-James Orthogonality in $C^*$-Algebras

Document Type : Original Scientific Paper

Authors

1 ‎Department of Mathematical Science, ‎Yazd University, ‎Yazd‎, ‎Iran

2 ‎Department of Pure Mathematics, ‎University of Kashan, Kashan‎, ‎Iran

10.22052/mir.2025.256282.1501

Abstract

‎Assume that $ \mathcal{A} $ is a unital C*-algebra and $ a\in\mathcal{A} $ is a positive and invertible element‎. ‎Set \[ \mathcal{S}_a (\mathcal{A})=\{ \dfrac{f}{f(a)} \‎, : ‎\‎, ‎f \in \mathcal{S}(\mathcal{A})‎, ‎\‎, ‎f(a)\neq 0\}‎, ‎\] where $ \mathcal{S}(\mathcal{A}) $ is the state space of $ \mathcal{A} $‎.
 
‎The main aim of this paper is to introduce and study the notions of approximate a-orthogonality and approximate a-Birkhoff-James orthogonality associated to the norm‎: ‎\[ \|x\|_a = \sup_{\varphi \in \mathcal{S}_a(\mathcal{A})} \sqrt{\varphi(x* ax)}\quad (x\in \mathcal{A}),\] in C*-algebra $\mathcal{A}$‎.
‎First‎, ‎by providing some examples‎, ‎we show that these approximate orthogonalities are generally incomparable in non-commutative C*-algebras‎. ‎Next‎, ‎we will see that under what conditions‎, ‎these orthogonality relationships are related‎. ‎Also‎, ‎two different characterizations of approximate a-Birkhoff-James orthogonality in terms of the elements of $ \mathcal{S}_a (\mathcal{A}) $ are obtained‎.
‎Moreover‎, ‎the strong version of approximate a-Birkhoff-James orthogonality is studied‎. ‎Finally‎, ‎we prove that if approximate a-Birkhoff-James orthogonality and its strong version coincide on $ \mathcal{A} $‎, ‎then $ \mathcal{A} $ is commutative‎.

Keywords

Main Subjects


[1] A. Bourhim and M. Mabrouk, a-numerical range on C*-algebras, Positivity 25 (2021) 1489-1510, https://doi.org/10.1007/s11117-021-00825-6.
[2] A. Alahmari, M. Mabrouk and A. Zamani, Further results on the a-numerical range in C*-algebras, Banach J. Math. Anal. 16 (2022) #25, https://doi.org/10.1007/s43037-022-00181-x.
[3] L .Arambašic, A. Guterman, B. Kuzma and S. Zhilina, Birkhoff-James orthogonality: Characterizations, preservers, and orthogonality graphs, In: Aron, R. M., Moslehian, M. S., Spitkovsky, I. M., Woerdeman, H.J. (eds) Operator and
Norm Inequalities and Related Topics. Trends in Mathematics. Birkhäuser, Cham (2022).
[4] C. Benítez, M. Fernández and M. L. Soriano, Orthogonality of matrices, Linear Algebra Appl. 422 (2007) 155 -163.
[5] R. Bhatia and P. ˘Semrl, Orthogonality of matrices and some distance problems, Special issue celebrating the 60th birthday of Ludwig Elsner, Linear Algebra Appl. 287 (1999) 77-85.
[6] A. Mal, K. Paul and D. Sain, Birkhoff-James Orthogonality and Geometry of Operator Spaces, Springer, Singapore, 2024.
[7] A. Zamani, Birkhoff-James orthogonality of operators in semi-Hilbertian spaces and its applications, Ann. Funct. Anal. 10 (2019) 433 - 445, https://doi.org/10.1215/20088752-2019-0001.
[8] Lj. Arambašic and R. Rajic, On three concepts of orthogonality in Hilbert C*-modules, Linear Multilinear Algebra 63 (2015) 1485 - 1500, https://doi.org/10.1080/03081087.2014.947983.
[9] L. Arambašic and R. Rajic, A strong version of the Birkhoff-James orthogonality in Hilbert C*-modules, Ann. Funct. Anal. 5 (2014) 109 - 120, https://doi.org/10.15352/afa/1391614575.
[10] L. Arambašic and R. Rajic, The Birkhoff-James orthogonality in Hilbert C*-modules, Linear Algebra Appl. 437 (2012) 1913 - 1929, https://doi.org/10.1016/j.laa.2012.05.011.
[11] T. Bhattacharyya and P. Grover, Characterization of Birkhoff-James orthogonality, J. Math. Anal. Appl. 407 (2013) 350 - 358, https://doi.org/10.1016/j.jmaa.2013.05.022.
[12] M. S. Moslehian and A. Zamani, Characterizations of operator Birkhoff-James orthogonality, Canad. Math. Bull. 60 (2017) 816 - 829, https://doi.org/10.4153/CMB-2017-004-5.
[13] P. Wójcik and A. Zamani, From norm derivatives to orthogonalities in Hilbert C*-modules, Linear Multilinear Algebra 71 (2023) 875 - 888, https://doi.org/10.1080/03081087.2022.2046688.
[14] J. Chmielinski, T. Stypuła and P. Wójcik, Approximate orthogonality in normed spaces and its applications, Linear Algebra Appl. 531 (2017) 305-317, https://doi.org/10.1016/j.laa.2017.06.001.
[15] J. Chmielinski, On an "-Birkhoff orthogonality, J. Inequal. Pure Appl. Math. 6 (2005) #79.
[16] J. Chmielinski, Approximate Birkhoff-James orthogonality in normed linear spaces and related topics. In: R. M. Aron, M. S. Moslehian, I. M. Spitkovsky and H. J. Woerdeman, (eds.) Operator and Norm Inequalities and Related Topics, 303 - 320. Birkhäuser, Springer, Cham, 2022.
[17] J. Chmielinski, K. Gryszka and P. Wójcik, Convex functions and approximate Birkhoff-James orthogonality, Aequationes Math. 97 (2023) 1011-1021, https://doi.org/10.1007/s00010-023-01003-7.
[18] A. Mal, K. Paul, T. S. S. R. K. Rao and D. Sain, Approximate Birkhoff- James orthogonality and smoothness in the space of bounded linear operators, Monatsh. Math. 190 (2019) 549 - 558, https://doi.org/10.1007/s00605-019-01289-3.
[19] K. Paul, D. Sain and A. Mal, Approximate Birkhoff-James orthogonality in the space of bounded linear operators, Linear Algebra Appl. 537 (2018) 348 - 357, https://doi.org/10.1016/j.laa.2017.10.008.
[20] C. Conde and K. Feki, On approximate A-seminorm and A-numerical radius orthogonality of operators, Acta Math. Hungar. 173 (2024) 227 - 245, https://doi.org/10.1007/s10474-024-01439-6.
[21] J. Sen, D. Sain and K. Paul, On approximate orthogonality and symmetry of operators in semi-Hilbertian structure, Bull. Sci. Math. 170 (2021) #102997, https://doi.org/10.1016/j.bulsci.2021.102997.
[22] H. S. Jalali Ghamsari and M. Dehghani, Characterization of a-Birkhoff-James orthogonality in C*-algebras and its applications, Ann. Funct. Anal. 15 (2024) #36, https://doi.org/10.1007/s43034-024-00339-8.
[23] M. L. Arias, , G. Corach and M. C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (2008) 1460 - 1475, https://doi.org/10.1016/j.laa.2007.09.031.
[24] J. Dixmier, C*-Algebras, Amsterdam: North-Holland Publishing, 1977.
[25] G. J. Murphy, C*-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990.