[1] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
[2] C. Jadhav, T. Dale and S. Dhondge, A review on applications of fractional differential equations in engineering domain, Math. Stat. Eng. Appl. 71 (2022) 7147 - 7166, https://doi.org/10.17762/msea.v71i4.1331.
[3] J. T. Machado, V. Kiryakova and F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1140 - 1153, https://doi.org/10.1016/j.cnsns.2010.05.027.
[4] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing, 2010.
[5] M. Caputo, Elasticità e Dissipazione, Zanichelli, Bolognab, 1969.
[6] R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol. 27 (1983) 201 - 210, https://doi.org/10.1122/1.549724.
[7] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, 2010.
[8] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, 2010.
[9] T. M. Atanackovic, A generalized model for the uniaxial isothermal deformation of a viscoelastic body, Acta Mech. 159 (2002) 77 - 86, https://doi.org/10.1007/BF01171449.
[10] D. Y. Liu, Y. Tian, D. Boutat and T. M. Laleg-Kirati, An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation, Signal Process. 116 (2015) 78 - 90, https://doi.org/10.1016/j.sigpro.2015.04.017.
[11] M. A. Zaky, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dyn. 91 (2018) 2667 - 2681, https://doi.org/10.1007/s11071-017-4038-4.
[12] H. G. Sun, Z. Li, Y. Zhang and W. Chen, Fractional and fractal derivative models for transient anomalous diffusion: Model comparison, Chaos Solitons Fractals 102 (2017) 346 - 353, https://doi.org/10.1016/j.chaos.2017.03.060.
[13] M. Caputo, Mean fractional-order-derivatives differential equations and filters, Ann. Univ. Ferrara. 41 (1995) 73 - 84,
https://doi.org/10.1007/BF02826009.
[14] R. L. Bagley and P. J. Torvik, On the existence of the order domain and the solution of distributed order equations-part I, Int. J. Appl. Math. 2 (2000) 865 - 882.
[15] K. Diethelm and N. J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math. 225 (2009) 96 - 104, https://doi.org/10.1016/j.cam.2008.07.018.
[16] N. J. Ford, M. L. Morgado and M. Rebelo, An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time, Electron. Trans. Numer. Anal. 44 (2015) 289 - 305.
[17] G. Ghanbari and M. Razzaghi, Numerical solutions for distributedorder fractional optimal control problems by using generalized fractionalorder Chebyshev wavelets, Nonlinear Dyn. 108 (2022) 265 - 277,
https://doi.org/10.1007/s11071-021-07195-4.
[18] P. Rahimkhani, Y. Ordokhani and P. M. Lima, An improved composite collocation method for distributed order fractional differential equations based on fractional Chebyshev wavelets, Appl. Numer. Math. 145 (2019) 1 - 27, https://doi.org/10.1016/j.apnum.2019.05.023.
[19] Q. H. Do, H. T. B. Ngo and M. Razzaghi, A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 95 (2021) 105597, https://doi.org/10.1016/j.cnsns.2020.105597.
[20] P. Rahimkhani, Y. Ordokhani and S. Sabermahani, Hahn hybrid functions for solving distributed order fractional Black-Scholes European option pricing problem arising in financial market, Math. Methods Appl. Sci. 46 (2023) 6558 - 6577.
[21] M. L. Morgado, M. Rebelo and L. L. Ferras, Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method, Appl. Numer. Math. 114 (2017) 108 - 123.
[22] M. Pourbabaee and A. Saadatmandi, A novel Legendre operational matrix for distributed order fractional differential equations, Appl. Math. Comput. 361 (2019) 215 - 231.
[23] M. Pourbabaee and A. Saadatmandi, A new operational matrix based on Müntz-Legendre polynomials for solving distributed order fractional differential equations, Math. Comput. Simul. 194 (2022) 210 - 235.
[24] Y. Ordokhani, S. Sabermahani and M. Razzaghi, Pell wavelet optimization method for solving time-fractional convection diffusion equations arising in science and medicine, Iran. J. Math. Chem. 15 (2024) 239 - 258.
[25] M. Pourbabaee and A. Saadatmandi, New operational matrix of Riemann- Liouville fractional derivative of orthonormal Bernoulli polynomials for the numerical solution of some distributed-order time-fractional partial differential
equations, J. Appl. Anal. Comput. 13 (2023) 3352 - 3373.
[26] P. Rahimkhani and Y. Ordokhani, Performance of Genocchi wavelet neural networks and least squares support vector regression for solving different kinds of differential equations, Comput. Appl. Math. 42 (2023) #71, https://doi.org/10.1007/s40314-023-02220-1.
[27] P. Rahimkhani, Y. Ordokhani and P. M. Lima, Numerical solution of stochastic fractional integro-differential/ Itô-Volterra integral equations via fractional Genocchi wavelets, Comput. Methods Differ. Equ. 14 (2025) 110-128,
https://doi.org/10.22034/CMDE.2024.64161.2891.
[28] H. Dehestani, Y. Ordokhani and M. Razzaghi, On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay, Numer. Linear Algebra Appl. 26 (2019) #e2259, https://doi.org/10.1002/nla.2259.
[29] H. T. B. Ngo, T. N. Vo and M. Razzaghi, An effective method for solving nonlinear fractional differential equations, Eng. Comput. 38 (2022) 207-218, https://doi.org/10.1007/s00366-020-01143-3.
[30] T. Eftekhari, J. Rashidinia and K. Maleknejad, Existence, uniqueness, and approximate solutions for the general nonlinear distributed-order fractional differential equations in a Banach space, Adv. Differ. Equ. 2021 (2021) #461, https://doi.org/10.1186/s13662-021-03617-0.
[31] T. Kim, Y. S. Jang and J. J. Seo, A note on poly-Genocchi numbers and polynomials, Appl. Math. Sci. 8 (2014) 4775 - 4781.
[32] H. Dehestani, Y. Ordokhani and M. Razzaghi, Hybrid functions for numerical solution of fractional Fredholm–Volterra functional integro-differential equations with proportional delays, Int. J. Numer. Model. El. 32 (2019) #e2606, https://doi.org/10.1002/jnm.2606.
[33] E. Keshavarz and Y. Ordokhani, A fast numerical algorithm based on the Taylor wavelets for solving the fractional integro-differential equations with weakly singular kernels, Math. Methods Appl. Sci. 42 (2019) 4427 - 4443, https://doi.org/10.1002/mma.5663.
[34] P. Rahimkhani, Y. Ordokhani and E. Babolian, Fractional-order Bernoulli wavelets and their applications, Appl. Math. Model. 40 (2016) 8087 - 8107, https://doi.org/10.1016/j.apm.2016.04.026.
[35] A. H. Ganie, M. Houas and M. E. Samei, Pantograph system with mixed Riemann-Liouville and Caputo-Hadamard sequential fractional derivatives: Existence and Ulam-stability, Math. Interdisc. Res. 10 (2025) 1 - 33, 10.22052/MIR.2024.254075.1453.
[36] E. Keshavarz, Y. Ordokhani and M. Razzaghi, A numerical solution for fractional optimal control problems via Bernoulli polynomials, J. Vib. Control 22 (2016) 3889 - 3903.
[37] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer, 2006.
[38] P. Rahimkhani, Y. Ordokhani and E. Babolian, Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algorithms 77 (2018)
1283 - 1305,
https://doi.org/10.1007/s11075-017-0363-4.
[39] R. F. Bass, Real Analysis for Graduate Students, CreateSpace Independent Publishing Platform, 2013.
[40] J. T. Katsikadelis, Numerical solution of distributed order fractional differential equations, J. Comput. Phys. 259 (2014) 11 - 22, https://doi.org/10.1016/j.jcp.2013.11.013.