Improvement of Optical Properties in Hexagonal Index-guiding Photonic Crystal Fiber for Optical Communications

Document Type : Original Scientific Paper


Nano-photonics and Optoelectronics Research Laboratory (NORLab), Faculty of Electrical and Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran, I R Iran


Waveguides with low confinement loss, low chromatic dispersion, and low nonlinear effects are used in optical communication systems. Optical fibers can also be employed in such systems. Besides optical fibers, photonic crystal fibers are also highly suitable transmission media for optical communication systems. In this paper, we introduce two new designs of index-guiding photonic crystal fiber (IGPCF) with characteristics appropriate for optical communications. In the first proposed design with a hexagonal structure having a defect at the center, the chromatic dispersion at the wavelength of 1550 nm is less than 1 ps/( In the second design with a hexagonal structure having air holes with unequal diameters, nearly zero dispersion at the wavelength range of 1370 to 1380 nm is achieved. At the same time, for the latter design, at the wavelength of 1550 nm, the chromatic dispersion slope is1 ps/(km.nm), the confinement loss is less than 10-9 dB/km, and the nonlinear coefficient reaches 3.690


Main Subjects

1. A. M. Abdelghani, M. F. O. Hameed, M. Abdelrazzak, M. A. Hindy, S. S. A. Obayya, Liquid crystal photonic crystal fiber with high non-linearity and birefringence, IET Optoelectron. 8 (2014) 210-216.
2. G. Agrawal, N. Kejalakshmy, B. M. A. Rahman, K. T. V. Grattan, Polarization and dispersion properties of elliptical hole golden spiral photonic crystal fiber, Appl. Phys. B 99 (2010) 717-726.
3. B. H. Almewafy, M. F. O. Hameed, N. F. F. Areed, A. M. Heikal, S. S. A. Obayya, Analysis of polarisation conversion in cascaded bent photonic crystal fibre, IET Optoelectron. 7 (2013) 85-92.
4. T. A. Birks, J. C. Knight, P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett. 22 (1997) 961-963.
5. M. Chen, S. Xie, New nonlinear and dispersion flattened photonic crystal fiber with low confinement loss, Opt. Commun. 281 (2008) 2073-2076.
6. N. H. Hai, Y. Namihiray, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Razzak, N. Zou, Multiple defect-core hexagonal photonic crystal fiber with flattened dispersion an polarizationmaintaining properties, Opt. Review 15 (2008) 31-37.
7. M. F. O. Hameed, S. S. A. Obayya, K. Al Begain, A. M. Nasr, M. I. A. el Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fiber coupler, IET Optoelectron. 3 (2009) 264-273.
8. K. P. Hansen, Dispersion flattened hybrid-core nonlinear photonic crystal fiber, Opt. Express 11 (2003) 1503-1509.
9. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, M. C. J. Large, Fabrication and study of micro structured optical fibers with elliptical holes, Opt. Lett. 29 (2004) 1336-1338.
10. C. M. Jewart, S. M. Quintero, A. M. B. Braga, K. P. Chen, Design of a highlybirefringent micro structured photonic crystal fiber for pressure monitoring, Opt. Express 18 (2010) 25657-25664.
11. J. C. Knight, P. St. J. Russell, Applied optics: new ways to guide light, Science 296 (2002) 276-277.
12. A. Naraghi, S. Olyaee, A. Najibi, E. Leitgeb, Photonic crystal fiber gas sensor for using in optical network protection systems, 18th European Conference on Network and Optical Communications and 8th Conference on Optical Cabling
and Infrastructure, Graz, Austria, 10-12 July 2013.
13. S. M. Nejad, N. Ehteshami, Novel design to compensate dispersion for indexguiding photonic crystal fiber with defected core, 2nd International Conference on Mechanical and Electronics Engineering, IEEE, 2010, Vol. 2, PP.
14. J. Noda, K. Okamoto, Y. Sasaki, Polarization-Maintaining Fibers and Their Applications, J. Light wave Technol. 4 (1986) 1071-1089.
15. S. Olyaee, F. Taghipour, A new design of photonic crystal fiber with ultraflattened dispersion to simultaneously minimize the dispersion and confinement loss, Journal of Physics: Conference Series 276 (2010) 1-6.
16. S. Olyaee, F. Taghipour, Design of new square-lattice photonic crystal fibers for optical communication applications, Int. J. Phys. Sci. 6 (2011) 4405-4411.
17. S. Olyaee, F. Taghipour, Ultra-flattened dispersion photonic crystal fiber with low confinement loss, 11th International Conference on Telecommunications, ConTEL, Graz University of Technology, Austria, PP. 531-534, 15-17 June
18. S. Olyaee, F. Taghipour, Ultra-flattened dispersion hexagonal photonic crystal fiber with low confinement loss and large effective area, IET Optoelectron. 6 (2012) 82-87.
19. S. Olyaee, F. Taghipour, M. Izadpanah, Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1550 nm wavelength, Frontiers of Optoelectronics in China 4 (2011) 420-425.
20. S. M. A. Razzak, M. A. G. Khan, Y. Namihira, M. Y. Hussain, Optimum design of a dispersion managed photonic crystal fiber for nonlinear optics applications in telecom systems, Fifth Int. Conf. Electrical and Computer Engineering ICECE 2008, Bangladesh, IEEE.
21. W. H. Reeves, J. C. Knight, P. St. J. Russell, P. J. Roberts, Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express 10 (2002) 609-613.
22. P. St. J. Russell, Photonic-Crystal Fibers, J. Light Wave Technol. 24 (2006) 4729-4749.
23. K. Saitoh, M. Koshiba, Photonic band gap fibers with high birefringence, IEEE Photonics Technol Let. 14 (2002) 1291-1293.
24. K. Saitoh, M. Koshiba, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers, Opt. Express 11 (2003) 3100-3109.
25. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Opt. Express 11 (2003) 843-852.
26. R. Selim, D. Pinto, S. S. A. Obayya, Improved design of photonic crystalbased multiplexer/demultiplexer devices, IET Optoelectron. 4 (2010) 165-173.
27. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, H. Thienpont, Experimental and theoretical investigations of the birefringent holey fiber with triple defect, Appl. Opt. 44 (2005) 2652-2658.