Sufficient Conditions for a New Class of Polynomial Analytic Functions of Reciprocal Order alpha

Document Type : Original Scientific Paper

Authors

1 Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran

2 Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran

Abstract

In this paper, we consider a new class of analytic functions in the unit disk using polynomials of order alpha. We give some sufficient conditions for functions belonging to this
class.

Keywords

Main Subjects


1. R. M. Ali, V. Ravichandran, Classes of meromorphic α-convex functions, Taiwanese J. Math. 14 (4) (2010) 1479–1490. 
2. R. M. Ali, V. Ravichandran, N. Seenivasagan, Subordination and superordination of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 31 (2) (2008) 193–207.
3. R. M. Ali, V. Ravichandran, N. Seenivasagan, On subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 33(2) (2010) 311–324.
4. M. K. Aouf, Argument estimates of certain meromorphically multivalent functions associated with generalized hypergeometric function, Appl. Math. Comput. 206 (2) (2008) 772–780.
5. N. E. Cho, Argument estimates of certain meromorphic functions, Commun. Korean Math. Soc. 15 (2) (2000) 263–274.
6. N. E. Cho, O. S. Kwon, A class of integral operators preserving subordination and superordination, Bull. Malays. Math. Sci. Soc. (2) 33 (3) (2010) 429–437.
7. A. W. Goodman, Univalent Functions, Vol. I. Mariner Publishing Co., Inc., Tampa, FL, 1983.
8. I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971) 469–474.
9. M. Nunokawa, O. P. Ahuja, On meromorphic starlike and convex functions, Indian J. Pure Appl. Math. 32 (7) (2001) 1027–1032.
10. M. Nunokawa, Sh. Owa, J. Nishiwaki, K. Kuroki, T. Hayami, Differential subordination and argumental property, Comput. Math. Appl. 56 (10) (2008) 2733–2736.
11. H. Silverman, K. Suchithra, B. A. Stephen, A. Gangadharan, Coefficient bounds for certain classes of meromorphic functions, J. Inequal. Appl. Art. ID 931981 (2008) 9 pp.
12. H. M. Srivastava, D. G. Yang, N. Xu, Some subclasses of meromorphically multivalent functions associated with a linear operator, Appl. Math. Comput. 195(1) (2008) 11–23.
13. Y. Sun, W. P. Kuang, Z. G. Wang, On meromorphic starlike functions of reciprocal order α, Bull. Malays. Math. Sci. Soc. (2) 35 (2) (2012), 469–477.
14. Z. G. Wang, Y. P. Jiang, H. M. Srivastava, Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function, Comput. Math. Appl. 57 (4) (2009), 571–586.
15. Z. G. Wang, Z. H. Liu, Y. Sun, Some subclasses of meromorphic functions associated with a family of integral operators, J. Inequal. Appl. Art. ID 931230 (2009) 18 pp.
16. Z. G. Wang, Z. H. Liu, R. G. Xiang, Some criteria for meromorphic multivalent starlike functions, Appl. Math. Comput. 218 (3) (2011) 1107–1111.
17. Z. G. Wang, Y. Sun, Z. H. Zhang, Certain classes of meromorphic multivalent functions, Comput. Math. Appl. 58 (7) (2009) 1408–1417.
18. Z. G. Wang, Z. H. Liu, A. Cˇatas, On neighborhoods and partial sums of certain meromorphic multivalent functions, Appl. Math. Lett. 24 (6) (2011) 864–868.
19. R. G. Xiang, Z. G. Wang, M. Darus, A family of integral operators preserving subordination and superordination, Bull. Malays. Math. Sci. Soc. (2) 33 (1) (2010) 121–131.