Note on the Sum of Powers of Normalized Signless Laplacian Eigenvalues of Graphs

Document Type : Original Scientific Paper

Author

Konya, Turkey

Abstract

In this paper, for a connected graph G and a real α≠0, we define a new graph invariant σα(G)-as the sum of the alphath powers of the normalized signless Laplacian eigenvalues of G. Note that σ1/2(G) is equal to Randic (normalized) incidence energy which have been recently studied in the literature [5, 15]. We present some bounds on σα(G) (α ≠ 0, 1) and also consider the special case α = 1/2.

Keywords


[1] M. Bianchi, A. Cornaro, J. L. Palacios and A. Torriero, Bounding the sum of powers of normalized Laplacian eigenvalues of graphs through majorization methods, MATCH Commun. Math. Comput. Chem. 70 (2013) 707–716.
[2] S. B. Bozkurt, A. D. Gungor, I. Gutman and A. S. Cevik, Randic matrix and Randic energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 321–334.
[3] S. B. Bozkurt and D. Bozkurt, On the sum of powers of normalized Laplacian eigenvalues of graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 917–930.
[4] S. B. Bozkurt and I. Gutman, Estimating the incidence energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 143–156.
[5] B. Cheng and B. Liu, The normalized incidence energy of a graph, Linear Algebra Appl. 438 (2013) 4510–4519.
[6] H. Chen and F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math. 155 (2007) 654–661.
[7] F. R. K. Chung, Spectral Graph Theory, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1997.
[8] G. P. Clemente and A. Cornaro, New bounds for the sum of powers of normalized Laplacian eigenvalues of graphs, Ars Math. Contemp. 11 (2016) 403–413.
[9] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Academic press, New York, 1980.
[10] D. Cvetkovic, P. Rowlinson and S. Simic, Signless Laplacian of finite graphs, Linear Algebra Appl. 423 (2007) 155–171.
[11] D. Cvetkovic and S. Simic, Towards a spectral theory of graphs based on the signless Laplacian, I, Publ. Inst. Math. (Beograd) 85 (2009) 19–33.
[12] D. Cvetkovic and S. Simic, Towards a spectral theory of graphs based on the signless Laplacian, II, Linear Algebra Appl. 432 (2010) 2257–2277.
[13] D. Cvetkovic and S. Simic, Towards a spectral theory of graphs based on the signless Laplacian, III, Appl. Anal. Discrete Math. 4 (2010) 156–166.
[14] K. Ch. Das, A. D. Gungor and S. B. Bozkurt, On the normalized Laplacian eigenvalues of graphs, Ars Combin. 118 (2015) 143–154.
[15] R. Gu, F. Huang and X. Li, Randic incidence energy of graphs, Trans. Comb. 3 (2014) 1–9.
[16] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz 103 (1978) 1–22.
[17] I. Gutman, The McClelland approximation and the distribution of π-electron molecular orbital energy levels, J. Serb. Chem. Soc. 72 (2007) 967–973.
[18] I. Gutman, A. V. Teodorovic and Lj. Nedeljkovic, Topological properties of benzenoid systems. Bounds and approximate formula for total -electron energy, Theor. Chem. Acc. 65 (1984) 23–31.
[19] I. Gutman, D. Kiani and M. Mirzakhah, On incidence energy of graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 573–580.
[20] I. Gutman, D. Kiani, M. Mirzakhah and B. Zhou, On incidence energy of a graph, Linear Algebra Appl. 431 (2009) 1223–1233.
[21] I. Gutman, B. Zhou and B. Furtula, The Laplacian-energy like invariant is an energy like invariant, MATCH Commun. Math. Comput. Chem. 64 (2010) 85–96.
[22] R. Jooyandeh, D. Kiani and M. Mirzakhah, Incidence energy of a graph, MATCH Commun. Math. Comput. Chem. 62 (2009) 561–572.
[23] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.
[24] J. Li, J. M. Guo, W. C. Shiu, S. B. Bozkurt Altındag and D. Bozkurt, Bounding the sum of powers of normalized Laplacian eigenvalues of a graph, Appl. Math. Comput. 324 (2018) 82–92.
[25] B. Liu, Y. Huang and J. Feng, A note on the Randic spectral radius, MATCH Commun. Math. Comput. Chem. 68 (2012) 913–916.
[26] B. Liu, Y. Huang and Z. You, A survey on the Laplacian-energy like invariant, MATCH Commun. Math. Comput. Chem. 66 (2011) 713–730.
[27] J. Liu and B. Liu, A Laplacian-energy-like invariant of a graphs, MATCH Commun. Math. Comput. Chem. 59 (2008) 355–372.
[28] R. Merris, Laplacian matrices of graphs A survey, Linear Algebra Appl. 197-198 (1994) 143–176.
[29] R. Merris, A survey of graph Laplacians, Linear and Multilinear Algebra 39 (1995) 19–31.
[30] E. I. Milovanovic, M. M. Matejic and I. Ž. Milovanovic, On the normalized Laplacian spectral radius, Laplacian incidence energy and Kemeny’s constant, Linear Algebra Appl. 582 (2019) 181–196.
[31] D. S. Mitrinovic and P. M. Vasic, Analytic Inequalities, Springer-Verlag, New York,1970, pp.74–94.
[32] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472–1475.
[33] L. Shi, H. Wang, The Laplacian incidence energy of graphs, Linear Algebra Appl. 439 (2013) 4056–4062.
[34] B. Zhou, I. Gutman and T. Aleksic, A note on the Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 441–446.
[35] B. Zhou, More upper bounds for the incidence energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 123–128.