[1] A. R. Ashrafi, M. Eliasi and A. Ghalavand, Laplacian coefficients and Zagreb indices of trees, Linear Multilinear Algebra 67 (2019) 1736–1749.
[2] N. Biggs, Algebraic Graph Theory, Cambridge Univ Press, Cambridge, 1993.
[3] A. Behmaram, On the number of 4-matchings in graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 381–388.
[4] D. M. Cvetkovic, M. Doob and H. Sachs, Spectra in Graph–Theory and Application, Academic Press, New York, 1980.
[5] G. H. Fath-Tabar, A. R. Ashrafi and I. Gutman, Note on Estrada and LEstrada indices of graphs, Bull. Cl. Sci. Math. Nat. Sci. Math. 139 (2009) 1–16.
[6] G. H. Fath-Tabar, T. Došlic and A. R. Ashrafi, On the Szeged and the Laplacian Szeged spectrum of a graph, Linear Algebra Appl. 433 (2010) 662–671.
[7] G. H. Fath-Tabar and A. R. Ashrafi, Some remarks on Laplacian eigenvalues and Laplacian energy of graphs, Math. Commun. 15 (2010) 443–451.
[8] E. J. Farrel, J. M. Guo and G. M. Constantine, On matching coefficients, Discrete Math. 89 (1991) 203–210.
[9] I. Gutman and L. Pavlovic, On the coefficients of the Laplacian characteristic polynomial of trees, Bull. Cl. Sci. Math. Nat. Sci. Math. 28 (2003) 31–40.
[10] C. S. Oliveira, N. M. Maia de Abreu and S. Jurkiewicz, The characteristic polynomial of the Laplacian of graphs in (a; b)-linear classes, Special issue on algebraic graph theory, Linear Algebra Appl. 356 (2002) 113–121.
[11] F. Taghvaee and G. H. Fath-Tabar, On the skew spectral moments of graphs, Trans. Comb. 6 (2017) 47–54.
[12] F. Taghvaee and G. H. Fath-Tabar, Relationship between coefficients of characteristic polynomial and matching polynomial of regular graphs and its applications, Iranian J. Math. Chem. 8 (2017) 7–23.