Existence solution of a Biharmonic-type Kirchhoff-Schrödinger-Maxwell system

Document Type : Original Scientific Paper

Authors

Department of Mathematics, University of Mazandaran, Babolsar, Iran

Abstract

This article addresses the following biharmonic type of the Kirchhoff-Schrödinger-Maxwell system;
2 w − (a1 +b1RN |∇w| 2 )∆w + ηψw = q(w)           in RN,
−∆ψ = ηw2                                                                                in RN, (bKSM)
in which a1 ,b1 and η are fixed positive numbers and q is a continuous real valued function in R. We are going to prove the existence solution for this system via variational methods, delicate cut-off technique and Pohozaev identity.

Keywords


[1] ] V. Alexiades, A. R. Elcrat and P. W. Schaefer, Existence theorem for some nonlinear fourth-order elliptic boundary value problems, Nonlinear Anal. 4 (4) (1980) 805 − 813.
[2] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math. 10 (03) (2008) 391 − 404.
[3] Y. An and R. Liu, Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation, Nonlinear Anal. 68 (2008) 3325 − 3331.
[4] T. D. Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (5) (2004) 893 − 906.
[5] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl. 345 (1) (2008) 90−108.
[6] A. Azzollini, A. Pomponio and P. D. Avenia, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. 27 (2010) 779 − 791.
[7] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998) (2) 283−293.
[8] V. Benci, D. Fortunato, A. Masiello and L. Pisani, Solitons and the electromagnetic field, Math. Z. 232 (1) (1999) 73 − 102.
[9] H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (4) (1983) 313 − 345.
[10] M. Bhakta, Caffarelli-Kohn-Nirenberg type equations of fourth-order with the critical exponent and Rellich potential, J. Math. Anal. Appl. 433 (1) (2016) 681 − 700.
[11] G. M. Coclite, A multiplicity result for the linear Schrödinger-Maxwell equations with negative potential, Ann. Polon. Math. 79 (2002) 21 − 30.
[12] G. M. Coclite and V. Georgiev, Solitary waves for Schrödinger-Maxwell equations, Electron, J. Diff. Eqns. 2004 (94) (2004) 1 − 31.
[13] Md. F. Al-Asad, Md. N. Alam, C. Tunç and M. M. A. Sarker, Heat transport exploration of free convection flow inside enclosure having vertical wavy walls, J. Appl. Comput. Mech. 7 (2) (2021) 520 − 527.
[14] S. Islam, Md. N. Alam, Md. F. Al-Asad and C. Tunç, An analytical technique for solving new computational of the modified Zakharov-Kuznetsov equation arising in electrical engineering, J. Appl. Comput. Mech. 7 (2) (2021) 715 −726.
[15] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on R N , Proc. Roy. Soc. Edinburgh Sect. A: Math. 129 (4) (1999) 787 − 809.
[16] L. Jeanjean and S. Le Coz, An existence and stability result of standing waves of linear Schrödinger equations, Adv. Diff. Equ. 11 (2006) 813 − 840.
[17] G. Kirchhoff, Vorlesungen Über Mechanik, Teubner, Leipzig, 1883.
[18] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2) (2006) 655 − 674.
[19] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (2) (1977) 149 − 162.
[20] F. Wang, M. Avci and Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type, J. Math. Anal. Appl. 409 (2014) 140 − 146.