[1] A. Alzaatreh, C. Lee and F. Famoye, On the discrete analogues of continuous distributions, Stat. Methodol. 9 (6) (2012) 589 − 603.
[2] F. Buono, M. Longobardi and M. Szymkowiak, On generalized reversed aging intensity functions, Ricerche Mat. 71 (2021) 85 − 108.
[3] S. Chakraborty, Generating discrete analogues of continuous probability distributions-A survey of methods and constructions, J. Stat. Distrib. Appl. 2 (1) (2015) 1 − 30.
[4] N. K. Chandra and D. Roy, Some results on reversed hazard rate, Prob. Eng. Inf. Sci. 15 (2001) 95 − 102.
[5] I. Dewan and K. K. Sudheesh, On proportional (reversed) hazard model for discrete data, Technical report. Indian Statistical Institute, New Delhi, India, (2009) 1 − 30.
[6] R. Jiang, P. Ji and X. Xiao, Aging property of univariate failure rate models, Reliab. Eng. Syst. saf. 79 (2003) 113 − 116.
[7] A. K. Nanda, S. Bhattacharjee and S. S. Alam, Properties of aging intesity funciton, Stat. Prob. Lett. 77 (4) (2007) 365 − 373.
[8] M. S. Noughabi, A. H. Rezaei Roknabadi and G. R. Mohtashami Borzadaran, Some discrete lifetime distributions with bathtub-shaped hazard rate functions, Qual. Eng. 25 (3) (2013) 225 − 236.
[9] M. Rezaei and V. A. Khalef, On the reversed average intensity order, JSRI 11 (1) (2014) 25 − 39.
[10] A. H. Rezaei Roknabadi, G. M. Borzadaran and M. Khorashadizadeh, Some aspects of discrete hazard rate function in telescopic families, Econ. Qual. Control. 24 (1) (2009) 3542.
[11] M. Szymkowiak and M. IwiĆska, Characterizations of discrete weibull related distributions, Stat. Prob. Lett. 111 (C) (2016) 41 − 48.
[12] M. Szymkowiak, Characterizations of distributions through aging intensity, IEEE Trans. Reliab. 67 (2) (2018) 446 − 458.