Properties of Discrete Reversed Aging Intensity Function

Document Type : Original Scientific Paper


Department of Statistics, University of Kashan, Kashan, I. R. Iran



In this paper, we discuss the properties of reversed aging intensity (RAI) function for discrete random variable and study its nature for some distributions. Further, using this function we characterize some discrete related distributions. The closure properties of the aging classes defined in terms of RAI function are also presented and study its closure properties under different reliability operations, viz., formation of k-out-of-n system. Moreover, we define an ordering, called reversed aging intensity ordering and study its relationship with some usual stochastic orderings. Also a numerical example is given to explain the theoretical results.


[1] A. Alzaatreh, C. Lee and F. Famoye, On the discrete analogues of continuous distributions, Stat. Methodol. 9 (6) (2012) 589 − 603.
[2] F. Buono, M. Longobardi and M. Szymkowiak, On generalized reversed aging intensity functions, Ricerche Mat. 71 (2021) 85 − 108.
[3] S. Chakraborty, Generating discrete analogues of continuous probability distributions-A survey of methods and constructions, J. Stat. Distrib. Appl. 2 (1) (2015) 1 − 30.
[4] N. K. Chandra and D. Roy, Some results on reversed hazard rate, Prob. Eng. Inf. Sci. 15 (2001) 95 − 102.
[5] I. Dewan and K. K. Sudheesh, On proportional (reversed) hazard model for discrete data, Technical report. Indian Statistical Institute, New Delhi, India, (2009) 1 − 30.
[6] R. Jiang, P. Ji and X. Xiao, Aging property of univariate failure rate models, Reliab. Eng. Syst. saf. 79 (2003) 113 − 116.
[7] A. K. Nanda, S. Bhattacharjee and S. S. Alam, Properties of aging intesity funciton, Stat. Prob. Lett. 77 (4) (2007) 365 − 373.
[8] M. S. Noughabi, A. H. Rezaei Roknabadi and G. R. Mohtashami Borzadaran, Some discrete lifetime distributions with bathtub-shaped hazard rate functions, Qual. Eng. 25 (3) (2013) 225 − 236.
[9] M. Rezaei and V. A. Khalef, On the reversed average intensity order, JSRI 11 (1) (2014) 25 − 39.
[10] A. H. Rezaei Roknabadi, G. M. Borzadaran and M. Khorashadizadeh, Some aspects of discrete hazard rate function in telescopic families, Econ. Qual. Control. 24 (1) (2009) 3542.
[11] M. Szymkowiak and M. IwiƄska, Characterizations of discrete weibull related distributions, Stat. Prob. Lett. 111 (C) (2016) 41 − 48.
[12] M. Szymkowiak, Characterizations of distributions through aging intensity, IEEE Trans. Reliab. 67 (2) (2018) 446 − 458.