[1] P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer–Verlag, New York-Heidelberg, 1971.
[2] En. G. Fan, Integrable Systems and Computer Algebra, Science Press, 2004.
[3] E. Fan, Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation, Phys. Lett. A 282 (2001) 18–22.
[4] D. Feng, J. Lu, J. Li and T. He, Bifurcation studies on travelling wave solutions for nonlinear intensity Klein-Gordon equation, Appl. Math. Comput. 189 (2007) 271–284.
[5] J. K. Hale and H. Kocak, Dynamics and Bifurcation, Springer–Verlag, New York, 1991.
[6] J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons & Fractals 26 (2005) 695–700.
[7] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971) 1192–1194.
[8] J. Q. Hu, An algebraic method exactly solving two high–dimensional nonlinear evolution equations, Chaos, Solitons & Fractals 23 (2005) 391–398.
[9] B. Jiang, Y. Lu, J. Zhang and Q. Bi, Bifurcations and some new traveling wave solutions for the CH-γ equation, Appl. Math. Comput. 228 (2014) 220–233.
[10] M. Khalfallah, Exact traveling wave solutions of the Boussinesq–Burger equation, Math. Comput. Modelling 49 (2009) 666–671.
[11] J. B. Li and Y. S. Li, Bifurcations of travelling wave solutions for a two–component Camassa–Holm equation, Acta Math. Sin. (Engl. Ser.) 24 (2008) 1319–1330.
[12] Sh. Liu, Z. Fu, Sh. Liu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 285 (2001) 69–74.
[13] S. Y. Lou and X. Y. Tang, Nonlinear Mathematical and Physical Methods, Science Press, 2006.
[14] R. M. Miura, Backlund Transformation, the Inverse Scattering Method, Solitons, and their Applications, Springer-Verlage, Berlin, 1976.
[15] A. S. A. Rady and M. Khalfallah, On soliton solutions for Boussinesq-Burgers equations, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 886–894.
[16] M. Wang, Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A 213 (1996) 279–287.
[17] J. Weiss, M. Tabor and G. Carnevale, The painleve property for partial differential equations, J. Math. Phys. 24 (1983) 522-526.
[18] Ch. Yan, A simple transformation for nonlinear waves, Phys. Lett. A 224 (1996) 77–84.
[19] H. R. Z. Zangeneh, R. Kazemi and M. Mosaddeghi, Classification of bounded travelling wave solutions of the generalized Zakharov equation, Iran. J. Sci. Technol. Trans. A Sci. 38 (2014) 355–364.
[20] K. Zhang and J. Han, Bifurcations of traveling wave solutions for the (2 + 1)–dimensional generalized asymmetric Nizhnik-Novikov-Veselov equation, Appl.Math. Comput. 251 (2015) 108–117.